Search results
Results from the WOW.Com Content Network
In thermal engineering, the logarithmic mean temperature difference (LMTD) is used to determine the temperature driving force for heat transfer in flow systems, most notably in heat exchangers. The LMTD is a logarithmic average of the temperature difference between the hot and cold feeds at each end of the double pipe exchanger.
The law holds well for forced air and pumped liquid cooling, where the fluid velocity does not rise with increasing temperature difference. Newton's law is most closely obeyed in purely conduction-type cooling. However, the heat transfer coefficient is a function of the temperature difference in natural convective (buoyancy driven) heat transfer.
This factor is used to represent the temperature difference between indoor and outdoor air with the inclusion of the heating effects of solar radiation. [1] [5] The second factor is the CLF, or the cooling load factor. This coefficient accounts for the time lag between the outdoor and indoor temperature peaks.
In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat (i.e., the temperature difference, ΔT).
The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers (especially parallel flow, counter current, and cross-flow exchangers) when there is insufficient information to calculate the log mean temperature difference (LMTD). Alternatively, this method is useful for determining the expected heat ...
At the pinch point, where the hot and cold streams are the most constrained, large heat exchangers are required to transfer heat between the hot and cold streams. Large heat exchangers entail high investment costs. In order to reduce capital cost, in practice a minimum temperature difference (Δ T) at the pinch point is demanded, e.g., 10 °F.
For strongly temperature-dependent α, this approximation is only useful for small temperature differences ΔT. Temperature coefficients are specified for various applications, including electric and magnetic properties of materials as well as reactivity. The temperature coefficient of most of the reactions lies between 2 and 3.
The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts (joules per second). Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm).