enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laminar flow - Wikipedia

    en.wikipedia.org/wiki/Laminar_flow

    Laminar flow occurs at lower velocities, below a threshold at which the flow becomes turbulent. The threshold velocity is determined by a dimensionless parameter characterizing the flow called the Reynolds number, which also depends on the viscosity and density of the fluid and dimensions of the channel. Turbulent flow is a less orderly flow ...

  3. Laminar–turbulent transition - Wikipedia

    en.wikipedia.org/wiki/Laminarturbulent_transition

    The plume from an ordinary candle transitions from laminar to turbulent flow in this Schlieren photograph. In fluid dynamics, the process of a laminar flow becoming turbulent is known as laminar–turbulent transition. The main parameter characterizing transition is the Reynolds number.

  4. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    Laminar flow tends to dominate in the fast-moving center of the pipe while slower-moving turbulent flow dominates near the wall. As the Reynolds number increases, the continuous turbulent-flow moves closer to the inlet and the intermittency in between increases, until the flow becomes fully turbulent at Re D > 2900. [13]

  5. Turbulence - Wikipedia

    en.wikipedia.org/wiki/Turbulence

    Laminar and turbulent water flow over the hull of a submarine. As the relative velocity of the water increases turbulence occurs. Turbulence in the tip vortex from an airplane wing passing through coloured smoke . Smoke rising from a cigarette. For the first few centimeters, the smoke is laminar.

  6. Fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Fluid_dynamics

    For instance, laminar flow over a sphere is steady in the frame of reference that is stationary with respect to the sphere. In a frame of reference that is stationary with respect to a background flow, the flow is unsteady. Turbulent flows are unsteady by definition. A turbulent flow can, however, be statistically stationary.

  7. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.

  8. Eddy (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Eddy_(fluid_dynamics)

    Blood flow in straight sections of the arterial tree are typically laminar (high, directed wall stress), but branches and curvatures in the system cause turbulent flow. [2] Turbulent flow in the arterial tree can cause a number of concerning effects, including atherosclerotic lesions, postsurgical neointimal hyperplasia, in-stent restenosis ...

  9. Nusselt number - Wikipedia

    en.wikipedia.org/wiki/Nusselt_number

    [1]: 336 A value between one and 10 is characteristic of slug flow or laminar flow. [2] A larger Nusselt number corresponds to more active convection, with turbulent flow typically in the 100–1000 range. [2] A similar non-dimensional property is the Biot number, which concerns thermal conductivity for a solid body rather than a fluid.