enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Crystallographic restriction theorem - Wikipedia

    en.wikipedia.org/wiki/Crystallographic...

    Thus 5-fold rotational symmetry cannot be eliminated by an argument missing either of those assumptions. A Penrose tiling of the whole (infinite) plane can only have exact 5-fold rotational symmetry (of the whole tiling) about a single point, however, whereas the 4-fold and 6-fold lattices have infinitely many centres of rotational symmetry.

  3. Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Penrose_tiling

    A Penrose tiling with rhombi exhibiting fivefold symmetry. A Penrose tiling is an example of an aperiodic tiling.Here, a tiling is a covering of the plane by non-overlapping polygons or other shapes, and a tiling is aperiodic if it does not contain arbitrarily large periodic regions or patches.

  4. Pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_tiling

    In 2016 it could be shown by Bernhard Klaassen that every discrete rotational symmetry type can be represented by a monohedral pentagonal tiling from the same class of pentagons. [15] Examples for 5-fold and 7-fold symmetry are shown below. Such tilings are possible for any type of n-fold rotational symmetry with n>2.

  5. Girih - Wikipedia

    en.wikipedia.org/wiki/Girih

    A periodic tiling of the plane is the regular repetition of a "unit cell", in the manner of a wallpaper, without any gaps. Such tilings can be seen as a two-dimensional crystal, and because of the crystallographic restriction theorem, the unit cell is restricted to a rotational symmetry of 2-fold, 3-fold, 4-fold, and 6-fold. It is therefore ...

  6. List of aperiodic sets of tiles - Wikipedia

    en.wikipedia.org/wiki/List_of_aperiodic_sets_of...

    An example of such a tiling is shown in the adjacent diagram (see the image description for more information). A tiling that cannot be constructed from a single primitive cell is called nonperiodic. If a given set of tiles allows only nonperiodic tilings, then this set of tiles is called aperiodic . [ 3 ]

  7. Quasicrystal - Wikipedia

    en.wikipedia.org/wiki/Quasicrystal

    The more precise mathematical definition is that there is never translational symmetry in more than n – 1 linearly independent directions, where n is the dimension of the space filled, e.g., the three-dimensional tiling displayed in a quasicrystal may have translational symmetry in two directions.

  8. Symmetry - Wikipedia

    en.wikipedia.org/wiki/Symmetry

    The triskelion has 3-fold rotational symmetry. A geometric shape or object is symmetric if it can be divided into two or more identical pieces that are arranged in an organized fashion. [5] This means that an object is symmetric if there is a transformation that moves individual pieces of the object, but doesn't change the overall shape.

  9. Alan Lindsay Mackay - Wikipedia

    en.wikipedia.org/wiki/Alan_Lindsay_Mackay

    He is a pioneer in the introduction of five-fold symmetry in materials and in 1981 predicted quasicrystals in a paper (in Russian) entitled "De Nive Quinquangula" [3] in which he used a Penrose tiling in two and three dimensions to predict a new kind of ordered structures not allowed by traditional crystallography.