enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnetostatics - Wikipedia

    en.wikipedia.org/wiki/Magnetostatics

    Magnetostatics is the study of magnetic fields in systems where the currents are steady (not changing with time). It is the magnetic analogue of electrostatics , where the charges are stationary. The magnetization need not be static; the equations of magnetostatics can be used to predict fast magnetic switching events that occur on time scales ...

  3. Ampère's circuital law - Wikipedia

    en.wikipedia.org/wiki/Ampère's_circuital_law

    The original circuital law only applies to a magnetostatic situation, to continuous steady currents flowing in a closed circuit. For systems with electric fields that change over time, the original law (as given in this section) must be modified to include a term known as Maxwell's correction (see below).

  4. Glossary of electrical and electronics engineering - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_electrical_and...

    The current carrying capacity of a conductor, in the context of electric power wiring. ampere The SI unit of electrical current. Ampère's circuital law The mathematical relation between the integral of the magnetic field over some closed curve to the current passing through the region bound by the curve. Ampère's force law

  5. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.

  6. Magnetic circuit - Wikipedia

    en.wikipedia.org/wiki/Magnetic_circuit

    Magnetic field (green) induced by a current-carrying wire winding (red) in a magnetic circuit consisting of an iron core C forming a closed loop with two air gaps G in it. In an analogy to an electric circuit, the winding acts analogously to an electric battery, providing the magnetizing field , the core pieces act like wires, and the gaps G act like resistors.

  7. Electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_field

    The two Maxwell equations, Faraday's Law and the Ampère–Maxwell Law, illustrate a very practical feature of the electromagnetic field. Faraday's Law may be stated roughly as "a changing magnetic field inside a loop creates an electric voltage around the loop". This is the principle behind the electric generator.

  8. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    A slightly more general [22] [note 9] way of relating the current to the B-field is through Ampère's law: =, where the line integral is over any arbitrary loop and is the current enclosed by that loop. Ampère's law is always valid for steady currents and can be used to calculate the B-field for certain highly symmetric situations such as an ...

  9. Ampère's force law - Wikipedia

    en.wikipedia.org/wiki/Ampère's_force_law

    In magnetostatics, the force of attraction or repulsion between two current-carrying wires (see first figure below) is often called Ampère's force law. The physical origin of this force is that each wire generates a magnetic field , following the Biot–Savart law , and the other wire experiences a magnetic force as a consequence, following ...