Search results
Results from the WOW.Com Content Network
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex. In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph ...
An example of a threshold graph. In graph theory, a threshold graph is a graph that can be constructed from a one-vertex graph by repeated applications of the following two operations: Addition of a single isolated vertex to the graph. Addition of a single dominating vertex to the graph, i.e. a single vertex that is connected to all other vertices.
Every graph is the disjoint union of its components. [2] Additional examples include the following special cases: In an empty graph, each vertex forms a component with one vertex and zero edges. [3] More generally, a component of this type is formed for every isolated vertex in any graph. [4]
Spectral graph theory is the branch of graph theory that uses spectra to analyze graphs. See also spectral expansion. split 1. A split graph is a graph whose vertices can be partitioned into a clique and an independent set. A related class of graphs, the double split graphs, are used in the proof of the strong perfect graph theorem.
A vertex with degree 1 is called a leaf vertex or end vertex or a pendant vertex, and the edge incident with that vertex is called a pendant edge. In the graph on the right, {3,5} is a pendant edge. This terminology is common in the study of trees in graph theory and especially trees as data structures.
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
Take a graph G and let M and M ′ be two matchings in G. Let G ′ be the resultant graph from taking the symmetric difference of M and M ′; i.e. (M - M ′) ∪ (M ′ - M). G ′ will consist of connected components that are one of the following: An isolated vertex. An even cycle whose edges alternate between M and M ′.
A connected graph G with the same vertex set as a connected hypergraph H is a host graph for H if every hyperedge of H induces a connected subgraph in G. For a disconnected hypergraph H, G is a host graph if there is a bijection between the connected components of G and of H, such that each connected component G' of G is a host of the ...