Search results
Results from the WOW.Com Content Network
A recent review of Lorenz's model [99] [100] progression spanning from 1960 to 2008 revealed his adeptness at employing varied physical systems to illustrate chaotic phenomena. These systems encompassed Quasi-geostrophic systems, the Conservative Vorticity Equation, the Rayleigh-Bénard Convection Equations, and the Shallow Water Equations.
Chaotic maps often occur in the study of dynamical systems. Chaotic maps and iterated functions often generate fractals . Some fractals are studied as objects themselves, as sets rather than in terms of the maps that generate them.
In the OGY method, small, wisely chosen, kicks are applied to the system once per cycle, to maintain it near the desired unstable periodic orbit. [3] To start, one obtains information about the chaotic system by analyzing a slice of the chaotic attractor. This slice is a Poincaré section. After the information about the section has been ...
For systems invariant under time reversal, the energy-level statistics of a number of chaotic systems have been shown to be in good agreement with the predictions of the Gaussian orthogonal ensemble (GOE) of random matrices, and it has been suggested that this phenomenon is generic for all chaotic systems with this symmetry.
At the end of the window, the system reverts to widespread chaos. For a period 3 window, the final 3-band chaos turns into large-area 1-band chaos at a ≈ 3.857 , ending the window . However, this change is discontinuous, and the 3-band chaotic attractor suddenly changes size and turns into a 1-band .
This page was last edited on 19 July 2005, at 14:32 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...
Because of the exponential divergence of the nearby trajectories of chaotic systems, having two chaotic systems evolving in synchrony might appear surprising. However, synchronization of coupled or driven chaotic oscillators is a phenomenon well established experimentally and reasonably well-understood theoretically.
Devaney is known for formulating a simple and widely used definition of chaotic systems, one that does not need advanced concepts such as measure theory. [8] In his 1989 book An Introduction to Chaotic Dynamical Systems, Devaney defined a system to be chaotic if it has sensitive dependence on initial conditions, it is topologically transitive (for any two open sets, some points from one set ...