Search results
Results from the WOW.Com Content Network
Viruses may undergo two types of life cycles: the lytic cycle and the lysogenic cycle. In the lytic cycle, the virus introduces its genome into a host cell and initiates replication by hijacking the host's cellular machinery to make new copies of the virus. [12] In the lysogenic life cycle, the viral genome is incorporated into the host genome ...
To enter the cells, proteins on the surface of the virus interact with proteins of the cell. Attachment, or adsorption, occurs between the viral particle and the host cell membrane. A hole forms in the cell membrane, then the virus particle or its genetic contents are released into the host cell, where replication of the viral genome may commence.
Life-cycle of a typical virus (left to right); following infection of a cell by a single virus, hundreds of offspring are released. When a virus infects a cell, the virus forces it to make thousands more viruses. It does this by making the cell copy the virus's DNA or RNA, making viral proteins, which all assemble to form new virus particles. [37]
When infected, the host cell is forced to rapidly produce thousands of copies of the original virus. [75] Their life cycle differs greatly between species, but there are six basic stages in their life cycle: [26]: 75–91 Attachment is a specific binding between viral capsid proteins and specific receptors on the host cellular surface. This ...
In a typical virus particle, called a virion, the RNA-dependent polymerase is bound to the viral genome in some manner and begins transcription of the viral genome after entering a cell. As part of a virus's life cycle, the RNA-dependent polymerase also synthesizes copies of the viral genome as part of the process of creating new viruses.
The lytic cycle (/ ˈ l ɪ t ɪ k / LIT-ik) is one of the two cycles of viral reproduction (referring to bacterial viruses or bacteriophages), the other being the lysogenic cycle. The lytic cycle results in the destruction of the infected cell and its membrane.
The assembled human DNA clamp, a trimer of the protein PCNA. In all cases the helicase is composed of six polypeptides that wrap around only one strand of the DNA being replicated. The two polymerases are bound to the helicase hexamer. In eukaryotes the helicase wraps around the leading strand, and in prokaryotes it wraps around the lagging ...
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.