Search results
Results from the WOW.Com Content Network
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air, is about 343 m/s (1,125 ft/s; 1,235 km/h; 767 mph; 667 kn), or 1 km in 2.91 s or one mile in 4.69 s.
60 bpm, common tempo in music 2 Hz: 120 bpm, common tempo in music ~7.83 Hz: Fundamental frequency of the Schumann resonances: 10 1: 10 hertz 10 Hz: Cyclic rate of a typical automobile engine at idle (equivalent to 600 rpm) 12 Hz: Acoustic – the lowest possible frequency that a human can hear [3] 18 Hz: Average house cat's purr 24 Hz
The lower human threshold of hearing, and the lowest pedal notes of a pipe organ. 32 to 512 2nd to 5th Rhythm frequencies, where the lower and upper bass notes lie. 512 to 2,048 6th to 7th Defines human speech intelligibility, gives a horn-like or tinny quality to sound. 2,048 to 8,192 8th to 9th
Figure 1. Table 1's data in graphical format. Although given as a function of depth [note 1], the speed of sound in the ocean does not depend solely on depth.Rather, for a given depth, the speed of sound depends on the temperature at that depth, the depth itself, and the salinity at that depth, in that order.
The anacoustic zone, also known as the zone of silence, is the region of the atmosphere of Earth above about 160 kilometers (99 mi) where the air density becomes so low that air molecules are not close enough to support transmission of sound waves within the hearing range.
c is the speed of sound in the medium, which in air varies with the square root of the thermodynamic temperature. By definition, at Mach 1, the local flow velocity u is equal to the speed of sound. At Mach 0.65, u is 65% of the speed of sound (subsonic), and, at Mach 1.35, u is 35% faster than the speed of sound (supersonic).
From the speed of sound, the temperature of the air in the planetary boundary layer can be computed. [2] The maximum altitude range of RASS systems is typically 750 metres (2,460 ft), although observations have been reported up to 1.2 km (3,900 ft) in moist air.
The speed of sound depends on the medium the waves pass through, and is a fundamental property of the material. The first significant effort towards measurement of the speed of sound was made by Isaac Newton. He believed the speed of sound in a particular substance was equal to the square root of the pressure acting on it divided by its density: