Search results
Results from the WOW.Com Content Network
The gravitational field of a spherically symmetric mass distribution like a mass point, a spherical shell or a homogeneous sphere must also be spherically symmetric. If n ^ {\displaystyle {\hat {\mathbf {n} }}} is a unit vector in the direction from the point of symmetry to another point the gravitational field at this other point must therefore be
In gravitation, Chasles' theorem says that the Newtonian gravitational attraction of a spherical shell, outside of that shell, is equivalent mathematically to the attraction of a point mass. [1] The theorem is conventionally known as Newton's shell theorem, but is attributed to Michel Chasles (1793–1880) by Benjamin Peirce.
It is defined so that the gravitational force experienced by a particle is equal to the mass of the particle multiplied by the gravitational field at that point. Gravitational flux is a surface integral of the gravitational field over a closed surface, analogous to how magnetic flux is a surface integral of the magnetic field. Gauss's law for ...
The intuitive idea of Birkhoff's theorem is that a spherically symmetric gravitational field should be produced by some massive object at the origin; if there were another concentration of mass–energy somewhere else, this would disturb the spherical symmetry, so we can expect the solution to represent an isolated object. That is, the field ...
This formulation is dependent on the objects causing the field. The field has units of acceleration; in SI, this is m/s 2. Gravitational fields are also conservative; that is, the work done by gravity from one position to another is path-independent. This has the consequence that there exists a gravitational potential field V(r) such that
In classical mechanics, a gravitational field is a physical quantity. [5] A gravitational field can be defined using Newton's law of universal gravitation. Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle. The ...
The gravitational potential energy is the potential energy an object has because it is within a gravitational field. The magnitude of the force between a point mass, M {\displaystyle M} , and another point mass, m {\displaystyle m} , is given by Newton's law of gravitation : [ 3 ] F = G M m r 2 {\displaystyle F={\frac {GMm}{r^{2}}}}
A cylindrical Gaussian surface is commonly used to calculate the electric charge of an infinitely long, straight, 'ideal' wire. A Gaussian surface is a closed surface in three-dimensional space through which the flux of a vector field is calculated; usually the gravitational field, electric field, or magnetic field. [1]