Search results
Results from the WOW.Com Content Network
Photorespiration may be necessary for the assimilation of nitrate from soil. Thus, a lowering in photorespiration by genetic engineering or because of increasing atmospheric carbon dioxide may not benefit plants as has been proposed. [13] Several physiological processes may be responsible for linking photorespiration and nitrogen assimilation.
C3 carbon fixation is prone to photorespiration (PR) during dehydration, accumulating toxic glycolate products. In the 2000s scientists used computer simulation combined with an optimization algorithm to figure out what parts of the metabolic pathway may be tuned to improve photosynthesis.
2 in photorespiration. The rate of photorespiration is higher at high temperatures. Photorespiration turns RuBP into 3-PGA and 2-phosphoglycolate, a 2-carbon molecule that can be converted via glycolate and glyoxalate to glycine. Via the glycine cleavage system and tetrahydrofolate, two glycines are converted into serine plus CO 2. Serine can ...
Therefore, degradation of 2-PG during photorespiration is important for cellular homeostasis. Photorespiration is the main way of chloroplasts to rid themselves of 2-PG. [ 4 ] However, this pathway comes at a decreased return on investment ratio as 2-PG is transformed to 3-phosphoglycerate in an elaborate salvage pathway at the cost of one ...
One efficiency-focused research topic is improving the efficiency of photorespiration. Around 25% of the time RuBisCO incorrectly collects oxygen molecules instead of CO 2, creating CO 2 and ammonia that disrupt the photosynthesis process. Plants remove these byproducts via photorespiration, requiring energy and nutrients that would otherwise ...
The main carboxylating enzyme in C 3 photosynthesis is called RuBisCO, which catalyses two distinct reactions using either CO 2 (carboxylation) or oxygen (oxygenation) as a substrate. RuBisCO oxygenation gives rise to phosphoglycolate, which is toxic and requires the expenditure of energy to recycle through photorespiration.
If you’re stuck on today’s Wordle answer, we’re here to help—but beware of spoilers for Wordle 1275 ahead. Let's start with a few hints.
Metal-catalyzed oxidations with O 2 proceed via the intermediacy of dioxygen complexes, although the actual oxidants are often oxo derivatives. The reversible binding of O 2 to metal complexes has been used as a means to purify oxygen from air, but cryogenic distillation of liquid air remains the dominant technology.