enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  3. Leonhard Euler - Wikipedia

    en.wikipedia.org/wiki/Leonhard_Euler

    Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər; [b] German: [ˈleːɔnhaʁt ˈʔɔʏlɐ] ⓘ, Swiss Standard German: [ˈleɔnhard ˈɔʏlər]; 15 April 1707 – 18 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician, and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in many other branches of ...

  4. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    The number e (e = 2.718...), also known as Euler's number, which occurs widely in mathematical analysis The number i , the imaginary unit such that i 2 = − 1 {\displaystyle i^{2}=-1} The equation is often given in the form of an expression set equal to zero, which is common practice in several areas of mathematics.

  5. Contributions of Leonhard Euler to mathematics - Wikipedia

    en.wikipedia.org/wiki/Contributions_of_Leonhard...

    The 18th-century Swiss mathematician Leonhard Euler (1707–1783) is among the most prolific and successful mathematicians in the history of the field.His seminal work had a profound impact in numerous areas of mathematics and he is widely credited for introducing and popularizing modern notation and terminology.

  6. History of logarithms - Wikipedia

    en.wikipedia.org/wiki/History_of_logarithms

    As noted by Howard Eves, "One of the anomalies in the history of mathematics is the fact that logarithms were discovered before exponents were in use." [16] Carl B. Boyer wrote, "Euler was among the first to treat logarithms as exponents, in the manner now so familiar." [17]

  7. Proof that e is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_e_is_irrational

    His proofs are similar to Fourier's proof of the irrationality of e. In 1891, Hurwitz explained how it is possible to prove along the same line of ideas that e is not a root of a third-degree polynomial with rational coefficients, which implies that e 3 is irrational. [12] More generally, e q is irrational for any non-zero rational q. [13]

  8. List of representations of e - Wikipedia

    en.wikipedia.org/wiki/List_of_representations_of_e

    A unique representation of e can be found within the structure of Pascal's Triangle, as discovered by Harlan Brothers. Pascal's Triangle is composed of binomial coefficients, which are traditionally summed to derive polynomial expansions. However, Brothers identified a product-based relationship between these coefficients that links to e.

  9. History of mathematics - Wikipedia

    en.wikipedia.org/wiki/History_of_mathematics

    The history of mathematics deals with the origin of discoveries in mathematics and the mathematical methods and notation of the past.Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales.