Search results
Results from the WOW.Com Content Network
In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial ...
The entry 4+2i = −i(1+i) 2 (2+i), for example, could also be written as 4+2i= (1+i) 2 (1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right complex half plane with absolute value of the real part larger than or equal to the absolute value of the imaginary part.
If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4). Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem.
Integer factorization is the process of determining which prime numbers divide a given positive integer.Doing this quickly has applications in cryptography.The difficulty depends on both the size and form of the number and its prime factors; it is currently very difficult to factorize large semiprimes (and, indeed, most numbers that have no small factors).
Each r is a norm of a − r 1 b and hence that the product of the corresponding factors a − r 1 b is a square in Z[r 1], with a "square root" which can be determined (as a product of known factors in Z[r 1])—it will typically be represented as an irrational algebraic number.
Squares are always congruent to 0, 1, 4, 5, 9, 16 modulo 20. The values repeat with each increase of a by 10. In this example, N is 17 mod 20, so subtracting 17 mod 20 (or adding 3), produces 3, 4, 7, 8, 12, and 19 modulo 20 for these values. It is apparent that only the 4 from this list can be a square.
On April 2, 1994, the factorization of RSA-129 was completed using QS. It was a 129-digit number, the product of two large primes, one of 64 digits and the other of 65 digits. The factor base for this factorization contained 524339 primes. The data collection phase took 5000 MIPS-years, done in distributed fashion over the Internet.
A weak factorization system (E, M) for a category C consists of two classes of morphisms E and M of C such that: [1] The class E is exactly the class of morphisms having the left lifting property with respect to each morphism in M. The class M is exactly the class of morphisms having the right lifting property with respect to each morphism in E.