enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Google JAX - Wikipedia

    en.wikipedia.org/wiki/Google_JAX

    It is designed to follow the structure and workflow of NumPy as closely as possible and works with various existing frameworks such as TensorFlow and PyTorch. [5] [6] The primary functions of JAX are: [2] grad: automatic differentiation; jit: compilation; vmap: auto-vectorization; pmap: Single program, multiple data (SPMD) programming

  3. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    In September 2022, Meta announced that PyTorch would be governed by the independent PyTorch Foundation, a newly created subsidiary of the Linux Foundation. [ 24 ] PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo , a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and ...

  4. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    C++, Java: Java, Scala, Clojure, Python , Kotlin: Yes No [8] Yes [9] [10] No Computational Graph Yes [11] Yes Yes Yes Yes [12] Yes Dlib: Davis King 2002 Boost Software License: Yes Cross-platform: C++: C++, Python: Yes No Yes No Yes Yes No Yes Yes Yes Yes Flux: Mike Innes 2017 MIT license: Yes Linux, MacOS, Windows (Cross-platform) Julia: Julia ...

  5. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    Download QR code; Print/export Download as PDF; Printable version; In other projects ... Torch development moved in 2017 to PyTorch, a port of the library to Python ...

  6. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    TensorFlow 2.0 introduced many changes, the most significant being TensorFlow eager, which changed the automatic differentiation scheme from the static computational graph to the "Define-by-Run" scheme originally made popular by Chainer and later PyTorch. [32]

  7. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    The code is hosted on GitHub, and community support forums include the GitHub issues page, and a Slack channel. [citation needed] In addition to standard neural networks, Keras has support for convolutional and recurrent neural networks. It supports other common utility layers like dropout, batch normalization, and pooling. [12]

  8. Medical open network for AI - Wikipedia

    en.wikipedia.org/wiki/Medical_open_network_for_AI

    Medical open network for AI (MONAI) is an open-source, community-supported framework for Deep learning (DL) in healthcare imaging. MONAI provides a collection of domain-optimized implementations of various DL algorithms and utilities specifically designed for medical imaging tasks.

  9. CatBoost - Wikipedia

    en.wikipedia.org/wiki/Catboost

    The source code is licensed under Apache License and available on GitHub. [6] InfoWorld magazine awarded the library "The best machine learning tools" in 2017. [11] along with TensorFlow, Pytorch, XGBoost and 8 other libraries. Kaggle listed CatBoost as one of the most frequently used machine learning (ML) frameworks in the world.