enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    The model is then trained on a training sample and evaluated on the testing sample. The testing sample is previously unseen by the algorithm and so represents a random sample from the joint probability distribution of x {\displaystyle x} and y {\displaystyle y} .

  3. Predictive modelling - Wikipedia

    en.wikipedia.org/wiki/Predictive_modelling

    Predictive modelling uses statistics to predict outcomes. [1] Most often the event one wants to predict is in the future, but predictive modelling can be applied to any type of unknown event, regardless of when it occurred. For example, predictive models are often used to detect crimes and identify suspects, after the crime has taken place. [2]

  4. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive modeling is a statistical technique used to predict future behavior. It utilizes predictive models to analyze a relationship between a specific unit in a given sample and one or more features of the unit. The objective of these models is to assess the possibility that a unit in another sample will display the same pattern.

  5. Multiple comparisons problem - Wikipedia

    en.wikipedia.org/wiki/Multiple_comparisons_problem

    The following table defines the possible outcomes when testing multiple null hypotheses. Suppose we have a number m of null hypotheses, denoted by: H 1, H 2, ..., H m. Using a statistical test, we reject the null hypothesis if the test is declared significant. We do not reject the null hypothesis if the test is non-significant.

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. Trend analysis - Wikipedia

    en.wikipedia.org/wiki/Trend_analysis

    In project management, trend analysis is a mathematical technique that uses historical results to predict future outcome. This is achieved by tracking variances in cost and schedule performance. This is achieved by tracking variances in cost and schedule performance.

  8. Dependent and independent variables - Wikipedia

    en.wikipedia.org/wiki/Dependent_and_independent...

    In mathematics, a function is a rule for taking an input (in the simplest case, a number or set of numbers) [5] and providing an output (which may also be a number). [5] A symbol that stands for an arbitrary input is called an independent variable, while a symbol that stands for an arbitrary output is called a dependent variable. [6]

  9. Probabilistic classification - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_classification

    Formally, an "ordinary" classifier is some rule, or function, that assigns to a sample x a class label ลท: y ^ = f ( x ) {\displaystyle {\hat {y}}=f(x)} The samples come from some set X (e.g., the set of all documents , or the set of all images ), while the class labels form a finite set Y defined prior to training.