enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    Assume that we want to find intersection of two infinite lines in 2-dimensional space, defined as a 1 x + b 1 y + c 1 = 0 and a 2 x + b 2 y + c 2 = 0. We can represent these two lines in line coordinates as U 1 = (a 1, b 1, c 1) and U 2 = (a 2, b 2, c 2). The intersection P′ of two lines is then simply given by [4]

  3. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    [1]: 300 In two dimensions (i.e., the Euclidean plane), two lines that do not intersect are called parallel. In higher dimensions, two lines that do not intersect are parallel if they are contained in a plane, or skew if they are not. On a Euclidean plane, a line can be represented as a boundary between two regions.

  4. Playfair's axiom - Wikipedia

    en.wikipedia.org/wiki/Playfair's_axiom

    Two straight lines which intersect one another cannot be both parallel to the same straight line. Playfair acknowledged Ludlam and others for simplifying the Euclidean assertion. In later developments the point of intersection of the two lines came first, and the denial of two parallels became expressed as a unique parallel through the given point.

  5. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the lineline intersection between two distinct lines , which either is one point (sometimes called a vertex ) or does not exist (if the lines are parallel ).

  6. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    The Persian mathematician, astronomer, philosopher, and poet Omar Khayyám (1050–1123), attempted to prove the fifth postulate from another explicitly given postulate (based on the fourth of the five principles due to the Philosopher , namely, "Two convergent straight lines intersect and it is impossible for two convergent straight lines to ...

  7. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    Thus, for 3-dimensional spaces, one needs to show that (1*) every point lies in 3 distinct planes, (2*) every two planes intersect in a unique line and a dual version of (3*) to the effect: if the intersection of plane P and Q is coplanar with the intersection of plane R and S, then so are the respective intersections of planes P and R, Q and S ...

  8. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    Any line through a triangle that splits both the triangle's area and its perimeter in half goes through the triangle's incenter, and each triangle has one, two, or three of these lines. [2] Thus if there are three of them, they concur at the incenter. The Tarry point of a triangle is the point of concurrency of the lines through the vertices of ...

  9. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Parallel straight lines are equidistant. (Poseidonios, 1st century B.C.) All the points equidistant from a given straight line, on a given side of it, constitute a straight line. (Christoph Clavius, 1574) Playfair's axiom. In a plane, there is at most one line that can be drawn parallel to another given one through an external point.