enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    The notation () indicates an autoregressive model of order p.The AR(p) model is defined as = = + where , …, are the parameters of the model, and is white noise. [1] [2] This can be equivalently written using the backshift operator B as

  3. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    Autoregressive model. Use the partial autocorrelation plot to help identify the order. One or more spikes, rest are essentially zero (or close to zero) Moving average model, order identified by where plot becomes zero. Decay, starting after a few lags Mixed autoregressive and moving average model. All zero or close to zero

  4. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    The model is usually denoted ARMA(p, q), where p is the order of AR and q is the order of MA. The general ARMA model was described in the 1951 thesis of Peter Whittle , Hypothesis testing in time series analysis , and it was popularized in the 1970 book by George E. P. Box and Gwilym Jenkins .

  5. Partial autocorrelation function - Wikipedia

    en.wikipedia.org/wiki/Partial_autocorrelation...

    Partial autocorrelation is a commonly used tool for identifying the order of an autoregressive model. [6] As previously mentioned, the partial autocorrelation of an AR(p) process is zero at lags greater than p. [5] [8] If an AR model is determined to be appropriate, then the sample partial autocorrelation plot is examined to help identify the ...

  6. Lag operator - Wikipedia

    en.wikipedia.org/wiki/Lag_operator

    Polynomials of the lag operator can be used, and this is a common notation for ARMA (autoregressive moving average) models. For example, = = = (=) specifies an AR(p) model.A polynomial of lag operators is called a lag polynomial so that, for example, the ARMA model can be concisely specified as

  7. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    where L is the likelihood of the data, p is the order of the autoregressive part and q is the order of the moving average part. The k represents the intercept of the ARIMA model. For AIC, if k = 1 then there is an intercept in the ARIMA model (c ≠ 0) and if k = 0 then there is no intercept in the ARIMA model (c = 0).

  8. Fractional differencing and fractional integration are the same operation with opposite values of d: e.g. the fractional difference of a time series to d = 0.5 can be inverted (integrated) by applying the same fractional differencing operation (again) but with fraction d = -0.5. See GRETL fracdiff function.

  9. Moving-average model - Wikipedia

    en.wikipedia.org/wiki/Moving-average_model

    [1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable. Together with the autoregressive (AR) model, the moving-average model is a special case and key component of the more general ARMA and ARIMA models of time series, [3] which have a more complicated stochastic ...