Search results
Results from the WOW.Com Content Network
miRNA biogenesis in plants differs from animal biogenesis mainly in the steps of nuclear processing and export. Instead of being cleaved by two different enzymes, once inside and once outside the nucleus, both cleavages of the plant miRNA are performed by a Dicer homolog, called Dicer-like1 (DL1). DL1 is expressed only in the nucleus of plant ...
These two proteins homeostatically control miRNA biogenesis by an auto-feedback loop. [16] A 2nt 3' overhang is generated by Drosha in the nucleus recognized by Dicer in the cytoplasm, which couples the upstream and downstream processing events. Pre-miRNA is then further processed by the RNase Dicer into mature miRNAs in the cell cytoplasm.
The RNA-induced silencing complex, or RISC, is a multiprotein complex, specifically a ribonucleoprotein, which functions in gene silencing via a variety of pathways at the transcriptional and translational levels. [1]
Small RNA (sRNA) are polymeric RNA molecules that are less than 200 nucleotides in length, and are usually non-coding. [1] RNA silencing is often a function of these molecules, with the most common and well-studied example being RNA interference (RNAi), in which endogenously expressed microRNA (miRNA) or exogenously derived small interfering RNA (siRNA) induces the degradation of complementary ...
In cellular biology, P-bodies, or processing bodies, are distinct foci formed by phase separation within the cytoplasm of a eukaryotic cell consisting of many enzymes involved in mRNA turnover. [1] P-bodies are highly conserved structures and have been observed in somatic cells originating from vertebrates and invertebrates , plants and yeast .
AGO2 (grey) in complex with a microRNA (light blue) and its target mRNA (dark blue) In humans, there are eight AGO family members, some of which are investigated intensively. However, even though AGO1–4 are capable of loading miRNA, endonuclease activity and thus RNAi-dependent gene silencing exclusively belongs to AGO2.
The genomic regions producing miRNA can be independent RNA-genes often being anti-sense to neighboring protein-coding genes, or can be found within the introns of protein-coding genes. [35] The co-localization of microRNA and protein-coding genes provides a mechanistic foundation by which microRNA regulates gene-expression.
In the past it had always been said that the same miRNA precursor generates the same miRNA sequences. However, the advent of deep sequencing has now allowed researchers to detect a huge variability in miRNA biogenesis, meaning that from the same miRNA precursor many different sequences can be generated potentially have different targets, [ 3 ...