Search results
Results from the WOW.Com Content Network
angle of attack α: angle between the x w,y w-plane and the aircraft longitudinal axis and, among other things, is an important variable in determining the magnitude of the force of lift; When performing the rotations described earlier to obtain the body frame from the Earth frame, there is this analogy between angles: β, ψ (sideslip vs yaw)
Forces acting on an airplane in steady level longitudinal flight, also known as straight and level flight, with a very small angle of attack. In steady level longitudinal flight, thrust counterbalances drag and lift supports the aircraft's weight. Lift and drag are components of the aerodynamic force.
Propulsive, aerodynamic, and gravitational force vectors acting on a space vehicle during launch. The forces acting on space vehicles are of three types: propulsive force (usually provided by the vehicle's engine thrust); gravitational force exerted by the Earth and other celestial bodies; and aerodynamic lift and drag (when flying in the atmosphere of the Earth or another body, such as Mars ...
Preliminary estimates can make some simplifying assumptions: a spherical, uniform planet; the vehicle can be represented as a point mass; solution of the flight path presents a two-body problem; and the local flight path lies in a single plane) with reasonably small loss of accuracy.
The aerodynamic forces are generated with respect to body axes, which is not an inertial frame. In order to calculate the motion, the forces must be referred to inertial axes. This requires the body components of velocity to be resolved through the heading angle () into inertial axes. Resolving into fixed (inertial) axes:
In flight a powered aircraft can be considered as being acted on by four forces: lift, weight, thrust, and drag. [1] Thrust is the force generated by the engine (whether that engine be a jet engine, a propeller, or -- in exotic cases such as the X-15-- a rocket) and acts in a forward direction for the purpose of overcoming drag. [2]
The longitudinal axis passes through the aircraft from nose to tail. Rotation about this axis is called roll. [3] The angular displacement about this axis is called bank. [4] The pilot changes bank angle by increasing the lift on one wing and decreasing it on the other. This differential lift causes rotation around the longitudinal axis.
The net aerodynamic force on the body is equal to the pressure and shear forces integrated over the body's total exposed area. [ 4 ] When an airfoil moves relative to the air, it generates an aerodynamic force determined by the velocity of relative motion, and the angle of attack .