enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    In non ideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section.

  3. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q. We also know that pressure must be proportional to the length of the pipe between the two points L as the pressure drop per unit length is a constant.

  4. Pressure drop - Wikipedia

    en.wikipedia.org/wiki/Pressure_drop

    Pressure drop (often abbreviated as "dP" or "ΔP") [1] is defined as the difference in total pressure between two points of a fluid carrying network. A pressure drop occurs when frictional forces, caused by the resistance to flow, act on a fluid as it flows through a conduit (such as a channel, pipe, or tube).

  5. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    [1] [2] [3] A key question is the uniformity of the flow distribution and pressure drop. Fig. 1. Manifold arrangement for flow distribution. Traditionally, most of theoretical models are based on Bernoulli equation after taking the frictional losses into account using a control volume (Fig. 2).

  6. Kozeny–Carman equation - Wikipedia

    en.wikipedia.org/wiki/Kozeny–Carman_equation

    The Kozeny–Carman equation (or Carman–Kozeny equation or Kozeny equation) is a relation used in the field of fluid dynamics to calculate the pressure drop of a fluid flowing through a packed bed of solids. It is named after Josef Kozeny and Philip C. Carman.

  7. Ergun equation - Wikipedia

    en.wikipedia.org/wiki/Ergun_equation

    To calculate the pressure drop in a given reactor, the following equation may be deduced: = + | |. This arrangement of the Ergun equation makes clear its close relationship to the simpler Kozeny-Carman equation, which describes laminar flow of fluids across packed beds via the first term on the right hand side.

  8. Young–Laplace equation - Wikipedia

    en.wikipedia.org/wiki/Young–Laplace_equation

    In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.

  9. Capillary pressure - Wikipedia

    en.wikipedia.org/wiki/Capillary_pressure

    In fluid statics, capillary pressure is the pressure between two immiscible fluids in a thin tube (see capillary action), resulting from the interactions of forces between the fluids and solid walls of the tube. Capillary pressure can serve as both an opposing or driving force for fluid transport and is a significant property for research and ...