enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    Chemist Linus Pauling first developed the hybridisation theory in 1931 to explain the structure of simple molecules such as methane (CH 4) using atomic orbitals. [2] Pauling pointed out that a carbon atom forms four bonds by using one s and three p orbitals, so that "it might be inferred" that a carbon atom would form three bonds at right angles (using p orbitals) and a fourth weaker bond ...

  3. Isovalent hybridization - Wikipedia

    en.wikipedia.org/wiki/Isovalent_hybridization

    In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...

  4. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    The hybrid can certainly be normalized, as it is the sum of two normalized wavefunctions. Orthogonality must be established so that the two hybrid orbitals can be involved in separate covalent bonds. The inner product of orthogonal orbitals must be zero and computing the inner product of the constructed hybrids gives the following calculation.

  5. Valence bond theory - Wikipedia

    en.wikipedia.org/wiki/Valence_bond_theory

    Hybridization is a model that describes how atomic orbitals combine to form new orbitals that better match the geometry of molecules. Atomic orbitals that are similar in energy combine to make hybrid orbitals. For example, the carbon in methane (CH 4) undergoes sp 3 hybridization to form four equivalent orbitals, resulting in a tetrahedral shape.

  6. Octet rule - Wikipedia

    en.wikipedia.org/wiki/Octet_rule

    To form five bonds, the one s, three p and one d orbitals combine to form five sp 3 d hybrid orbitals which each share an electron pair with a halogen atom, for a total of 10 shared electrons, two more than the octet rule predicts. Similarly to form six bonds, the six sp 3 d 2 hybrid orbitals form six bonds with 12 shared electrons. [18]

  7. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    4. Combine SALCs of the same symmetry type from the two fragments, and from N SALCs form N molecular orbitals. 5. Estimate the relative energies of the molecular orbitals from considerations of overlap and relative energies of the parent orbitals, and draw the levels on a molecular orbital energy level diagram (showing the origin of the ...

  8. Trigonal pyramidal molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_pyramidal...

    When all three atoms at the corners are identical, the molecule belongs to point group C 3v. Some molecules and ions with trigonal pyramidal geometry are the pnictogen hydrides (XH 3), xenon trioxide (XeO 3), the chlorate ion, ClO − 3, and the sulfite ion, SO 2− 3.

  9. Chemical bonding of water - Wikipedia

    en.wikipedia.org/wiki/Chemical_bonding_of_water

    Orbitals of same symmetry and similar energy levels can then be mixed to form a new set of molecular orbitals with bonding, nonbonding, and antibonding characteristics. In the simple MO diagram of H 2 O, the 2s orbital of oxygen is mixed with the premixed hydrogen orbitals, forming a new bonding (2a 1) and antibonding orbital (4a 1).