Search results
Results from the WOW.Com Content Network
Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.
The structured support-vector machine is a machine learning algorithm that generalizes the Support-Vector Machine (SVM) classifier. Whereas the SVM classifier supports binary classification , multiclass classification and regression , the structured SVM allows training of a classifier for general structured output labels .
SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...
The soft-margin support vector machine described above is an example of an empirical risk minimization (ERM) algorithm for the hinge loss. Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem that arises during the training of support-vector machines (SVM). It was invented by John Platt in 1998 at Microsoft Research. [1] SMO is widely used for training support vector machines and is implemented by the popular LIBSVM tool.
Empirically, for machine learning heuristics, choices of a function that do not satisfy Mercer's condition may still perform reasonably if at least approximates the intuitive idea of similarity. [6] Regardless of whether k {\displaystyle k} is a Mercer kernel, k {\displaystyle k} may still be referred to as a "kernel".
In machine learning, Platt scaling or Platt calibration is a way of transforming the outputs of a classification model into a probability distribution over classes.The method was invented by John Platt in the context of support vector machines, [1] replacing an earlier method by Vapnik, but can be applied to other classification models. [2]