enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discharge coefficient - Wikipedia

    en.wikipedia.org/wiki/Discharge_coefficient

    In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.

  3. Orifice plate - Wikipedia

    en.wikipedia.org/wiki/Orifice_plate

    Orifice plate showing vena contracta. An orifice plate is a thin plate with a hole in it, which is usually placed in a pipe. When a fluid (whether liquid or gaseous) passes through the orifice, its pressure builds up slightly upstream of the orifice [1] but as the fluid is forced to converge to pass through the hole, the velocity increases and the fluid pressure decreases.

  4. Water flow test - Wikipedia

    en.wikipedia.org/wiki/Water_flow_test

    c = discharge coefficient (unitless). This is usually 1.0 if using a diffuser. If using a wand to measure the stagnation pressure, the coefficient value depends on the shape of the flow hydrant orifice. A smooth and rounded outlet has c=0.9, a square and sharp outlet has c=0.8, and a square outlet which projects into the barrel has c=0.7.

  5. Torricelli's law - Wikipedia

    en.wikipedia.org/wiki/Torricelli's_law

    For low viscosity liquids (such as water) flowing out of a round hole in a tank, the discharge coefficient is in the order of 0.65. [4] By discharging through a round tube or hose, the coefficient of discharge can be increased to over 0.9. For rectangular openings, the discharge coefficient can be up to 0.67, depending on the height-width ratio.

  6. Flow conditioning - Wikipedia

    en.wikipedia.org/wiki/Flow_conditioning

    API 14.3 (1990) and ISO standards determined the Coefficient of Discharge by completing numerous calibration tests where the indicated mass flow was compared to the actual mass flow to determine coefficient of discharge. In all testing the common requirement was a fully developed flow profile entering the orifice plate. [8]

  7. Nappe (water) - Wikipedia

    en.wikipedia.org/wiki/Nappe_(water)

    In hydraulic engineering, a nappe is a sheet or curtain of water that flows over a weir or dam. The upper and lower water surface have well-defined characteristics that are created by the crest of a dam or weir. [1] Both structures have different features that characterize how a nappe might flow through or over impervious concrete structures. [2]

  8. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate. Mathematically the flow coefficient C v (or flow-capacity rating of valve) can be expressed as

  9. Restrictive flow orifice - Wikipedia

    en.wikipedia.org/wiki/Restrictive_flow_orifice

    A restrictive flow orifice (RFO) is a type of orifice plate.They are used to limit the potential danger, damage, or wastage of an uncontrolled flow from, for example, a compressed gas cylinder [1] [2] They are generally not limiting the flow during normal operation but if a fault or failure occurs causing uncontrolled flow the orifice will present a restriction, limiting the flow.