Search results
Results from the WOW.Com Content Network
The +M effect, also known as the positive mesomeric effect, occurs when the substituent is an electron donating group. The group must have one of two things: a lone pair of electrons, or a negative charge. In the +M effect, the pi electrons are transferred from the group towards the conjugate system, increasing the density of the system.
The reason for this is that while the inductive effect is still negative, the mesomeric effect is positive, causing partial cancellation. The data also show that for these substituents, the meta effect is much larger than the para effect, due to the fact that the mesomeric effect is greatly reduced in a meta substituent.
However, another effect that plays a role is the +M effect which adds electron density back into the benzene ring (thus having the opposite effect of the -I effect but by a different mechanism). This is called the mesomeric effect (hence +M) and the result for fluorine is that the +M effect approximately cancels out the -I effect.
Contributing structures of the carbonate ion. In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures (or forms, [1] also variously known as resonance structures or canonical structures) into a resonance hybrid (or hybrid structure) in valence bond theory.
It is generally considered an inductively withdrawing group (-I), because of the higher electronegativity of sp 2 carbon atoms, and a resonance donating group (+M), due to the ability of its π system to donate electron density when conjugation is possible. [5] The phenyl group is hydrophobic. Phenyl groups tend to resist oxidation and reduction.
The term electromeric effect is no longer used in standard texts and is considered as obsolete. [1] The concepts implied by the terms electromeric effect and mesomeric effect are absorbed in the term resonance effect. [2] This effect can be represented using curved arrows, which symbolize the electron shift, as in the diagram below:
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In chemistry, mesoionic compounds are one in which a heterocyclic structure is dipolar and where both the negative and the positive charges are delocalized. [1] A completely uncharged structure cannot be written and mesoionic compounds cannot be represented satisfactorily by any one mesomeric structure. [1] Mesoionic compounds are a subclass of ...