Search results
Results from the WOW.Com Content Network
Memory hierarchy of an AMD Bulldozer server. The number of levels in the memory hierarchy and the performance at each level has increased over time. The type of memory or storage components also change historically. [6] For example, the memory hierarchy of an Intel Haswell Mobile [7] processor circa 2013 is:
Cache hierarchy, or multi-level cache, is a memory architecture that uses a hierarchy of memory stores based on varying access speeds to cache data. Highly requested data is cached in high-speed access memory stores, allowing swifter access by central processing unit (CPU) cores.
Memory architecture describes the methods used to implement electronic computer data storage in a manner that is a combination of the fastest, most reliable, most durable, and least expensive way to store and retrieve information. Depending on the specific application, a compromise of one of these requirements may be necessary in order to ...
Data locality is a typical memory reference feature of regular programs (though many irregular memory access patterns exist). It makes the hierarchical memory layout profitable. In computers, memory is divided into a hierarchy in order to speed up data accesses. The lower levels of the memory hierarchy tend to be slower, but larger.
A CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost (time or energy) to access data from the main memory. [1] A cache is a smaller, faster memory, located closer to a processor core, which stores copies of the data from frequently used main memory locations. Most CPUs have a ...
Figure 1. Inclusive Policy. Consider an example of a two level cache hierarchy where L2 can be inclusive, exclusive or NINE of L1. Consider the case when L2 is inclusive of L1. Suppose there is a processor read request for block X. If the block is found in L1 cache, then the data is read from L1 cache and returned to the processor.
There are several memory banks which are one word wide, and one word wide bus. There is some logic in the memory that selects the correct bank to use when the memory gets accessed by the cache. Memory interleaving is a way to distribute individual addresses over memory modules. Its aim is to keep the most of modules busy as computations proceed.
The most common modification builds a memory hierarchy with separate CPU caches for instructions and data at lower levels of the hierarchy. There is a single address space for instructions and data, providing the von Neumann model, but the CPU fetches instructions from the instruction cache and fetches data from the data cache.