Search results
Results from the WOW.Com Content Network
The problem of two fixed centers conserves energy; in other words, the total energy is a constant of motion.The potential energy is given by =where represents the particle's position, and and are the distances between the particle and the centers of force; and are constants that measure the strength of the first and second forces, respectively.
The automatic calculation of particle interaction or decay is part of the computational particle physics branch. It refers to computing tools that help calculating the complex particle interactions as studied in high-energy physics , astroparticle physics and cosmology .
Standard Model of Particle Physics. The diagram shows the elementary particles of the Standard Model (the Higgs boson , the three generations of quarks and leptons , and the gauge bosons ), including their names, masses, spins, charges, chiralities, and interactions with the strong , weak and electromagnetic forces.
The Klein–Gordon equation, + =, was the first such equation to be obtained, even before the nonrelativistic one-particle Schrödinger equation, and applies to massive spinless particles. Historically, Dirac obtained the Dirac equation by seeking a differential equation that would be first-order in both time and space, a desirable property for ...
The general form of wavefunction for a system of particles, each with position r i and z-component of spin s z i. Sums are over the discrete variable s z , integrals over continuous positions r . For clarity and brevity, the coordinates are collected into tuples, the indices label the particles (which cannot be done physically, but is ...
In quantum mechanics, the position operator is the operator that corresponds to the position observable of a particle. When the position operator is considered with a wide enough domain (e.g. the space of tempered distributions ), its eigenvalues are the possible position vectors of the particle.
In the general time-independent case, the dynamics of a particle in a spherically symmetric potential are governed by a Hamiltonian of the following form: ^ = ^ + Here, is the mass of the particle, ^ is the momentum operator, and the potential () depends only on the vector magnitude of the position vector, that is, the radial distance from the ...
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form , or including electromagnetic interactions, it describes all spin-1/2 massive particles , called "Dirac particles", such as electrons and quarks for which parity is a symmetry .