Search results
Results from the WOW.Com Content Network
With the new operations, the implementation of AVL trees can be more efficient and highly-parallelizable. [13] The function Join on two AVL trees t 1 and t 2 and a key k will return a tree containing all elements in t 1, t 2 as well as k. It requires k to be greater than all keys in t 1 and smaller than all keys in t 2.
Under this framework, the join operation captures all balancing criteria of different balancing schemes, and all other functions join have generic implementation across different balancing schemes. The join-based algorithms can be applied to at least four balancing schemes: AVL trees, red–black trees, weight-balanced trees and treaps.
The weak AVL tree is defined by the weak AVL rule: Weak AVL rule: all rank differences are 1 or 2, and all leaf nodes have rank 0. Note that weak AVL tree generalizes the AVL tree by allowing for 2,2 type node. A simple proof shows that a weak AVL tree can be colored in a way that represents a red-black tree.
PAM supports four balancing schemes, including AVL trees, red-black trees, treaps and weight-balanced trees. PAM is a parallel library and is also safe for concurrency. Its parallelism can be supported by cilk, OpenMP or the scheduler in PBBS. [2] Theoretically, all algorithms in PAM are work-efficient and have polylogarithmic depth.
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.
Self-balancing binary trees solve this problem by performing transformations on the tree (such as tree rotations) at key insertion times, in order to keep the height proportional to log 2 (n). Although a certain overhead is involved, it is not bigger than the always necessary lookup cost and may be justified by ensuring fast execution of all ...
The algorithms for bulk operations aren't just applicable to the red–black tree, but can be adapted to other sorted sequence data structures also, like the 2–3 tree, 2–3–4 tree and (a,b)-tree. In the following different algorithms for bulk insert will be explained, but the same algorithms can also be applied to removal and update.
Tries support various operations: insertion, deletion, and lookup of a string key. Tries are composed of nodes that contain links, which either point to other suffix child nodes or null. As for every tree, each node but the root is pointed to by only one other node, called its parent.