Search results
Results from the WOW.Com Content Network
Hydrophobic collapse is a proposed process for the production of the 3-D conformation adopted by polypeptides and other molecules in polar solvents. The theory states that the nascent polypeptide forms initial secondary structure ( ɑ-helices and β-strands ) creating localized regions of predominantly hydrophobic residues .
Minimizing the number of hydrophobic side-chains exposed to water is an important driving force behind the folding process. [21] The hydrophobic effect is the phenomenon in which the hydrophobic chains of a protein collapse into the core of the protein (away from the hydrophilic environment). [12]
The hydrophobic effect depends on the temperature, which leads to "cold denaturation" of proteins. [19] The hydrophobic effect can be calculated by comparing the free energy of solvation with bulk water. In this way, the hydrophobic effect not only can be localized but also decomposed into enthalpic and entropic contributions. [3]
This folding process is driven by the hydrophobic effect: a tendency for hydrophobic (water-fearing) portions of the protein to shield themselves from the hydrophilic (water-loving) environment of the cell by burying into the interior of the protein. Thus, the exterior of a protein is typically hydrophilic, whereas the interior is typically ...
As one might expect, the stronger the non-covalent interactions present for a substance, the higher its boiling point. For example, consider three compounds of similar chemical composition: sodium n-butoxide (C 4 H 9 ONa), diethyl ether (C 4 H 10 O), and n-butanol (C 4 H 9 OH).
The folding funnel hypothesis is closely related to the hydrophobic collapse hypothesis, under which the driving force for protein folding is the stabilization associated with the sequestration of hydrophobic amino acid side chains in the interior of the folded protein. This allows the water solvent to maximize its entropy, lowering the total ...
The hydrophobic-polar protein folding model is a highly simplified model for examining protein folds in space. First proposed by Ken Dill in 1985, it is the most known type of lattice protein: it stems from the observation that hydrophobic interactions between amino acid residues are the driving force for proteins folding into their native state. [1]
In chemistry, folding is the process by which a molecule assumes its shape or conformation. The process can also be described as intramolecular self-assembly , a type of molecular self-assembly , where the molecule is directed to form a specific shape through noncovalent interactions , such as hydrogen bonding , metal coordination, hydrophobic ...