enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperparameter optimization - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_optimization

    In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts.

  3. Hyperparameter (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(machine...

    In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).

  4. Hyperparameter (Bayesian statistics) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(Bayesian...

    In Bayesian statistics, a hyperparameter is a parameter of a prior distribution; the term is used to distinguish them from parameters of the model for the underlying system under analysis. For example, if one is using a beta distribution to model the distribution of the parameter p of a Bernoulli distribution , then:

  5. Category:Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Category:Mathematical...

    Download as PDF; Printable version; ... Pages in category "Mathematical optimization" ... Hydrological optimization; Hyperparameter optimization; I.

  6. Coordinate descent - Wikipedia

    en.wikipedia.org/wiki/Coordinate_descent

    Coordinate descent is an optimization algorithm that successively minimizes along coordinate directions to find the minimum of a function.At each iteration, the algorithm determines a coordinate or coordinate block via a coordinate selection rule, then exactly or inexactly minimizes over the corresponding coordinate hyperplane while fixing all other coordinates or coordinate blocks.

  7. Bayesian optimization - Wikipedia

    en.wikipedia.org/wiki/Bayesian_optimization

    Bayesian optimization of a function (black) with Gaussian processes (purple). Three acquisition functions (blue) are shown at the bottom. [8]Bayesian optimization is typically used on problems of the form (), where is a set of points, , which rely upon less (or equal to) than 20 dimensions (,), and whose membership can easily be evaluated.

  8. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    However, these optimization techniques assumed constant hyperparameters, i.e. a fixed learning rate and momentum parameter. In the 2010s, adaptive approaches to applying SGD with a per-parameter learning rate were introduced with AdaGrad (for "Adaptive Gradient") in 2011 [ 16 ] and RMSprop (for "Root Mean Square Propagation") in 2012. [ 17 ]

  9. File:Hyperparameter Optimization using Tree-Structured Parzen ...

    en.wikipedia.org/wiki/File:Hyperparameter...

    English: In hyperparameter optimization with tree-structured Parzen estimators (TPE), the optimizer creates a model of the relation between hyperparameters and measured performance of the machine learning model to optimize. Areas of the search space with a better performance are searched more likely.