Search results
Results from the WOW.Com Content Network
A halogen addition reaction is a simple organic reaction where a halogen molecule is added to the carbon–carbon double bond of an alkene functional group. [1] The general chemical formula of the halogen addition reaction is: C=C + X 2 → X−C−C−X (X represents the halogens bromine or chlorine, and in this case, a solvent could be CH 2 ...
For example, consider radical bromination of toluene: [5] bromination of toluene with hydrobromic acid and hydrogen peroxide in water. This reaction takes place on water instead of an organic solvent and the bromine is obtained from oxidation of hydrobromic acid with hydrogen peroxide. An incandescent light bulb suffices to radicalize.
Nitration of toluene gives mono-, di-, and trinitrotoluene, all of which are widely used. Dinitrotoluene is the precursor to toluene diisocyanate, a precursor to polyurethane foam. Trinitrotoluene (TNT) is an explosive. Complete hydrogenation of toluene gives methylcyclohexane. The reaction requires a high pressure of hydrogen and a catalyst.
The sulfonation with fuming sulfuric acid gives benzenesulfonic acid. Aromatic halogenation with bromine, chlorine, or iodine gives the corresponding aryl halides. This reaction is typically catalyzed by the corresponding iron or aluminum trihalide. The Friedel–Crafts reaction can be performed either as an acylation or as an alkylation.
Bromotoluenes are aryl bromides based on toluene in which at least one aromatic hydrogen atom is replaced with a bromine atom. They have the general formula C 7 H 8–n Br n, where n = 1–5 is the number of bromine atoms.
Benzyl bromide is used in organic synthesis for the introduction of the benzyl groups when the less expensive benzyl chloride is insufficiently reactive. [6] [7] Benzylations are often achieved in the presence of catalytic amounts of sodium iodide, which generates the more reactive benzyl iodide in situ. [3]
Halogenation of benzene where X is the halogen, catalyst represents the catalyst (if needed) and HX represents the protonated base. A few types of aromatic compounds, such as phenol , will react without a catalyst , but for typical benzene derivatives with less reactive substrates, a Lewis acid is required as a catalyst .
For alkylbenzene derivatives, e.g. toluene, the alkyl positions tend to be halogenated by free radical conditions, whereas ring halogenation is favored in the presence of Lewis acids. [6] The decolouration of bromine water by electron-rich arenes is used in the bromine test. Reaction between benzene and halogen to form an halogenobenzene