enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    Adaptive instance normalization (AdaIN) is a variant of instance normalization, designed specifically for neural style transfer with CNNs, rather than just CNNs in general. [ 27 ] In the AdaIN method of style transfer, we take a CNN and two input images, one for content and one for style .

  3. Batch normalization - Wikipedia

    en.wikipedia.org/wiki/Batch_normalization

    Batch normalization (also known as batch norm) is a method used to make training of artificial neural networks faster and more stable through normalization of the layers' inputs by re-centering and re-scaling. It was proposed by Sergey Ioffe and Christian Szegedy in 2015.

  4. Canonicalization - Wikipedia

    en.wikipedia.org/wiki/Canonicalization

    For instance in Unix-like systems, the string "/./" can be replaced by "/". In the C standard library , the function realpath() performs this task. Other operations performed by this function to canonicalize filenames are the handling of /.. components referring to parent directories, simplification of sequences of multiple slashes, removal of ...

  5. Hyperparameter (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(machine...

    In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).

  6. Canonical form - Wikipedia

    en.wikipedia.org/wiki/Canonical_form

    In computing, the reduction of data to any kind of canonical form is commonly called data normalization. For instance, database normalization is the process of organizing the fields and tables of a relational database to minimize redundancy and dependency. [13]

  7. AlexNet - Wikipedia

    en.wikipedia.org/wiki/AlexNet

    It used local response normalization, and dropout regularization with drop probability 0.5. All weights were initialized as gaussians with 0 mean and 0.01 standard deviation. Biases in convolutional layers 2, 4, 5, and all fully-connected layers, were initialized to constant 1 to avoid the dying ReLU problem.

  8. Data cleansing - Wikipedia

    en.wikipedia.org/wiki/Data_cleansing

    For example, appending addresses with any phone numbers related to that address. Data cleansing may also involve harmonization (or normalization) of data, which is the process of bringing together data of "varying file formats, naming conventions, and columns", [ 2 ] and transforming it into one cohesive data set; a simple example is the ...

  9. Neural network Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Neural_network_Gaussian...

    The number of neurons in a layer is called the layer width. When we consider a sequence of Bayesian neural networks with increasingly wide layers (see figure), they converge in distribution to a NNGP. This large width limit is of practical interest, since the networks often improve as layers get wider.