Ad
related to: define poset with example words worksheet 3rd classteacherspayteachers.com has been visited by 100K+ users in the past month
- Worksheets
All the printables you need for
math, ELA, science, and much more.
- Projects
Get instructions for fun, hands-on
activities that apply PK-12 topics.
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Free Resources
Download printables for any topic
at no cost to you. See what's free!
- Worksheets
Search results
Results from the WOW.Com Content Network
A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.
Sometimes a graded poset is called a ranked poset but that phrase has other meanings; see Ranked poset. A rank or rank level of a graded poset is the subset of all the elements of the poset that have a given rank value. [1] [2] Graded posets play an important role in combinatorics and can be visualized by means of a Hasse diagram.
The poset of positive integers has deviation 0: every descending chain is finite, so the defining condition for deviation is vacuously true. However, its opposite poset has deviation 1. Let k be an algebraically closed field and consider the poset of ideals of the polynomial ring k[x] in one variable. Since the deviation of this poset is the ...
A Scott domain is a partially ordered set which is a bounded complete algebraic cpo. Scott open. See Scott topology. Scott topology. For a poset P, a subset O is Scott-open if it is an upper set and all directed sets D that have a supremum in O have non-empty intersection with O. The set of all Scott-open sets forms a topology, the Scott topology.
2. An inductive definition is a definition that specifies how to construct members of a set based on members already known to be in the set, often used for defining recursively defined sequences, functions, and structures. 3. A poset is called inductive if every non-empty ordered subset has an upper bound infinity axiom See Axiom of infinity.
In mathematics, a differential poset is a partially ordered set (or poset for short) satisfying certain local properties. (The formal definition is given below.) This family of posets was introduced by Stanley (1988) as a generalization of Young's lattice (the poset of integer partitions ordered by inclusion), many of whose combinatorial properties are shared by all differential posets.
In the mathematical field of order theory, a partially ordered set is bounded complete if all of its subsets that have some upper bound also have a least upper bound.Such a partial order can also be called consistently or coherently complete (Visser 2004, p. 182), since any upper bound of a set can be interpreted as some consistent (non-contradictory) piece of information that extends all the ...
In mathematics, a ranked poset is a partially ordered set in which one of the following (non-equivalent) conditions hold: it is a graded poset, or; a poset with the property that for every element x, all maximal chains among those with x as greatest element have the same finite length, or; a poset in which all maximal chains have the same ...
Ad
related to: define poset with example words worksheet 3rd classteacherspayteachers.com has been visited by 100K+ users in the past month