enow.com Web Search

  1. Ads

    related to: define poset with example words worksheet 3rd graders
  2. teacherspayteachers.com has been visited by 100K+ users in the past month

    • Lessons

      Powerpoints, pdfs, and more to

      support your classroom instruction.

    • Free Resources

      Download printables for any topic

      at no cost to you. See what's free!

    • Projects

      Get instructions for fun, hands-on

      activities that apply PK-12 topics.

    • Worksheets

      All the printables you need for

      math, ELA, science, and much more.

Search results

  1. Results from the WOW.Com Content Network
  2. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.

  3. Graded poset - Wikipedia

    en.wikipedia.org/wiki/Graded_poset

    A power set, partially ordered by inclusion, with rank defined as number of elements, forms a graded poset. In mathematics, in the branch of combinatorics, a graded poset is a partially-ordered set (poset) P equipped with a rank function ρ from P to the set N of all natural numbers. ρ must satisfy the following two properties:

  4. Ranked poset - Wikipedia

    en.wikipedia.org/wiki/Ranked_poset

    In mathematics, a ranked poset is a partially ordered set in which one of the following (non-equivalent) conditions hold: it is a graded poset, or; a poset with the property that for every element x, all maximal chains among those with x as greatest element have the same finite length, or; a poset in which all maximal chains have the same ...

  5. Glossary of order theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_order_theory

    A Scott domain is a partially ordered set which is a bounded complete algebraic cpo. Scott open. See Scott topology. Scott topology. For a poset P, a subset O is Scott-open if it is an upper set and all directed sets D that have a supremum in O have non-empty intersection with O. The set of all Scott-open sets forms a topology, the Scott topology.

  6. Glossary of set theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_set_theory

    1. A tree is a partially ordered set (T, <) such that for each t ∈ T, the set {s ∈ T : s < t} is well-ordered by the relation < 2. A tree is a collection of finite sequences such that every prefix of a sequence in the collection also belongs to the collection. 3. A cardinal κ has the tree property if there are no κ-Aronszajn trees tuple

  7. Deviation of a poset - Wikipedia

    en.wikipedia.org/wiki/Deviation_of_a_poset

    The poset of positive integers has deviation 0: every descending chain is finite, so the defining condition for deviation is vacuously true. However, its opposite poset has deviation 1. Let k be an algebraically closed field and consider the poset of ideals of the polynomial ring k[x] in one variable. Since the deviation of this poset is the ...

  1. Ads

    related to: define poset with example words worksheet 3rd graders