Search results
Results from the WOW.Com Content Network
2 is usually obtained by the fractional distillation of liquefied air. [53] Liquid oxygen may also be condensed from air using liquid nitrogen as a coolant. [54] Liquid oxygen is a highly reactive substance and must be segregated from combustible materials. [54]
One exception is phosphorus, for which the most stable form at 1 bar is black phosphorus, but white phosphorus is chosen as the standard reference state for zero enthalpy of formation. [2] For example, the standard enthalpy of formation of carbon dioxide is the enthalpy of the following reaction under the above conditions:
Solid oxygen forms at normal atmospheric pressure at a temperature below 54.36 K (−218.79 °C, −361.82 °F). Solid oxygen O 2 , like liquid oxygen , is a clear substance with a light sky-blue color caused by absorption in the red part of the visible light spectrum.
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).
The formation of O 2 occurs in the gas phase via the neutral exchange reaction between • O and • HO, which is also the main sink for • HO in dense regions. [20] We can see that atomic oxygen takes part both in the production and destruction of • HO, so the abundance of • HO depends mainly on the H + 3 abundance.
As a consequence, singlet oxygen in the gas phase is relatively long lived (54-86 milliseconds), [13] although interaction with solvents reduces the lifetime to microseconds or even nanoseconds. [14] In 2021, the lifetime of airborne singlet oxygen at air/solid interfaces was measured to be 550 microseconds. [15] The higher 1 Σ +
Since the heat of combustion of these elements is known, the heating value can be calculated using Dulong's Formula: HHV [kJ/g]= 33.87m C + 122.3(m H - m O ÷ 8) + 9.4m S where m C , m H , m O , m N , and m S are the contents of carbon, hydrogen, oxygen, nitrogen, and sulfur on any (wet, dry or ash free) basis, respectively.
For example, Paraffin has very large molecules and thus a high heat capacity per mole, but as a substance it does not have remarkable heat capacity in terms of volume, mass, or atom-mol (which is just 1.41 R per mole of atoms, or less than half of most solids, in terms of heat capacity per atom).