Ad
related to: infinite and finite sets worksheet 1teacherspayteachers.com has been visited by 100K+ users in the past month
- Packets
Perfect for independent work!
Browse our fun activity packs.
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Try Easel
Level up learning with interactive,
self-grading TPT digital resources.
- Worksheets
All the printables you need for
math, ELA, science, and much more.
- Packets
Search results
Results from the WOW.Com Content Network
In ZF, a set is infinite if and only if the power set of its power set is a Dedekind-infinite set, having a proper subset equinumerous to itself. [4] If the axiom of choice is also true, then infinite sets are precisely the Dedekind-infinite sets. If an infinite set is a well-orderable set, then it has many well-orderings which are non-isomorphic.
aleph-nought, aleph-zero, or aleph-null) is the cardinality of the set of all natural numbers, and is an infinite cardinal.The set of all finite ordinals, called or (where is the lowercase Greek letter omega), also has cardinality .
is a finite set with five elements. The number of elements of a finite set is a natural number (possibly zero) and is called the cardinality (or the cardinal number) of the set. A set that is not a finite set is called an infinite set. For example, the set of all positive integers is infinite:
Let be a set and a nonempty family of subsets of ; that is, is a nonempty subset of the power set of . Then is said to have the finite intersection property if every nonempty finite subfamily has nonempty intersection; it is said to have the strong finite intersection property if that intersection is always infinite.
Infinite sets are so common, that when one considers finite sets, this is generally explicitly stated; for example finite geometry, finite field, etc. Fermat's Last Theorem is a theorem that was stated in terms of elementary arithmetic , which has been proved only more than 350 years later.
Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of number of elements. In the case of infinite sets, the behavior is more complex.
The finite topology on is defined by these open sets and is sometimes denoted (). [ 4 ] When V has uncountable dimension, this topology is not locally convex nor does it make V as topological vector space , but when V has countable dimension it coincides with both the finest vector space topology on V and the finest locally convex topology on V .
Every set is a projective object in Set (assuming the axiom of choice). The finitely presentable objects in Set are the finite sets. Since every set is a direct limit of its finite subsets, the category Set is a locally finitely presentable category. If C is an arbitrary category, the contravariant functors from C to Set are often an important ...
Ad
related to: infinite and finite sets worksheet 1teacherspayteachers.com has been visited by 100K+ users in the past month