enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symbolab - Wikipedia

    en.wikipedia.org/wiki/Symbolab

    Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]

  3. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    An ellipse (red) obtained as the intersection of a cone with an inclined plane. Ellipse: notations Ellipses: examples with increasing eccentricity. In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant.

  4. n-ellipse - Wikipedia

    en.wikipedia.org/wiki/N-ellipse

    The 1-ellipse is the circle, and the 2-ellipse is the classic ellipse. Both are algebraic curves of degree 2. For any number n of foci, the n-ellipse is a closed, convex curve. [2]: (p. 90) The curve is smooth unless it goes through a focus. [5]: p.7 The n-ellipse is in general a subset of the points satisfying a particular algebraic equation. [5]:

  5. Elliptic coordinate system - Wikipedia

    en.wikipedia.org/wiki/Elliptic_coordinate_system

    The classic applications of elliptic coordinates are in solving partial differential equations, e.g., Laplace's equation or the Helmholtz equation, for which elliptic coordinates are a natural description of a system thus allowing a separation of variables in the partial differential equations. Some traditional examples are solving systems such ...

  6. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...

  7. Orthoptic (geometry) - Wikipedia

    en.wikipedia.org/wiki/Orthoptic_(geometry)

    Now, as in the case of a parabola, the quadratic equation has to be solved and the two solutions m 1, m 2 must be inserted into the equation ⁡ = (+). Rearranging shows that the isoptics are parts of the degree-4 curve: ( x 0 2 + y 0 2 − a 2 − b 2 ) 2 tan 2 ⁡ α = 4 ( a 2 y 0 2 + b 2 x 0 2 − a 2 b 2 ) . {\displaystyle \left(x_{0}^{2}+y ...

  8. Evolute - Wikipedia

    en.wikipedia.org/wiki/Evolute

    From this equation one gets the following properties of the evolute: At points with ′ = the evolute is not regular. That means: at points with maximal or minimal curvature (vertices of the given curve) the evolute has cusps. (See the diagrams of the evolutes of the parabola, the ellipse, the cycloid and the nephroid.)

  9. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    If λ 1 and λ 2 have the same algebraic sign, then Q is a real ellipse, imaginary ellipse or real point if K has the same sign, has the opposite sign or is zero, respectively. If λ 1 and λ 2 have opposite algebraic signs, then Q is a hyperbola or two intersecting lines depending on whether K is nonzero or zero, respectively.