Search results
Results from the WOW.Com Content Network
Electron transfer reactions are central to myriad processes and properties in soils, and redox potential, quantified as Eh (platinum electrode potential relative to the standard hydrogen electrode) or pe (analogous to pH as -log electron activity), is a master variable, along with pH, that controls and is governed by chemical reactions and ...
When this chain reaches PSI, an electron is again excited, creating a high redox-potential. The electron transport chain of photosynthesis is often put in a diagram called the Z-scheme, because the redox diagram from P680 to P700 resembles the letter Z. [3] The final product of PSII is plastoquinol, a mobile electron carrier in the membrane.
Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity. ET describes the mechanism by which electrons are transferred in redox reactions. [2] Electrochemical processes are ET reactions. ET reactions are relevant to photosynthesis and respiration and commonly involve transition ...
In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...
An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.
Redox pairs are listed with the oxidizer (electron acceptor) in red and the reducer (electron donator) in black. Relative favorability of redox reactions in marine sediments based on energy. Start points of arrows indicate energy associated with half-cell reaction.
Pseudocapacitance originates from a coupled, reversible redox reaction with several oxidation steps with overlapping potential. The electrons mostly come from the electrode's valence orbitals. The electron transfer reaction is very fast and can be accompanied with high currents. The electron transfer reaction takes place according to:
For example, an enzyme that catalyzed this reaction would be an oxidoreductase: A – + B → A + B – In this example, A is the reductant (electron donor) and B is the oxidant (electron acceptor). In biochemical reactions, the redox reactions are sometimes more difficult to see, such as this reaction from glycolysis: