Search results
Results from the WOW.Com Content Network
Electron transfer reactions are central to myriad processes and properties in soils, and redox potential, quantified as Eh (platinum electrode potential relative to the standard hydrogen electrode) or pe (analogous to pH as -log electron activity), is a master variable, along with pH, that controls and is governed by chemical reactions and ...
Example of a reduction–oxidation reaction between sodium and chlorine, with the OIL RIG mnemonic [1] Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity. ET describes the mechanism by which electrons are transferred in redox reactions. [2] Electrochemical processes are ET ...
Inner sphere electron transfer (IS ET) or bonded electron transfer [1] is a redox chemical reaction that proceeds via a covalent linkage—a strong electronic interaction—between the oxidant and the reductant reactants. In inner sphere electron transfer, a ligand bridges the two metal redox centers during the electron transfer event. Inner ...
For example, an enzyme that catalyzed this reaction would be an oxidoreductase: A – + B → A + B – In this example, A is the reductant (electron donor) and B is the oxidant (electron acceptor). In biochemical reactions, the redox reactions are sometimes more difficult to see, such as this reaction from glycolysis:
The international pictogram for oxidizing chemicals. Dangerous goods label for oxidizing agents. An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent (called the reductant, reducer, or electron donor).
Outer sphere electron transfer can occur between chemical species that are identical except for their oxidation state. [4] This process is termed self-exchange. An example is the degenerate reaction between the tetrahedral ions permanganate and manganate: [MnO 4] − + [Mn*O 4] 2− → [MnO 4] 2− + [Mn*O 4] −
In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...
Ferredoxins (from Latin ferrum: iron + redox, often abbreviated "fd") are iron–sulfur proteins that mediate electron transfer in a range of metabolic reactions. The term "ferredoxin" was coined by D.C. Wharton of the DuPont Co. and applied to the "iron protein" first purified in 1962 by Mortenson, Valentine, and Carnahan from the anaerobic bacterium Clostridium pasteurianum.