Search results
Results from the WOW.Com Content Network
A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path.The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path.
Since the centrifugal force of the parts of the earth, arising from the earth's diurnal motion, which is to the force of gravity as 1 to 289, raises the waters under the equator to a height exceeding that under the poles by 85472 Paris feet, as above, in Prop. XIX., the force of the sun, which we have now shewed to be to the force of gravity as ...
The centripetal force on the car is now also transferred to the suitcase and the situation of Newton's third law comes into play, with the centripetal force as the action part and with the so-called reactive centrifugal force as the reaction part. The reactive centrifugal force is also due to the inertia of the suitcase. Now however the inertia ...
This reaction force is sometimes described as a centrifugal inertial reaction, [44] [45] that is, a force that is centrifugally directed, which is a reactive force equal and opposite to the centripetal force that is curving the path of the mass. The concept of the reactive centrifugal force is sometimes used in mechanics and engineering.
The normal force is actually the sum of the radial and tangential forces. The component of weight force is responsible for the tangential force (when we neglect friction). The centripetal force is due to the change in the direction of velocity. The normal force and weight may also point in the same direction.
The "reactive centrifugal force" discussed in this article is not the same thing as the centrifugal pseudoforce, which is usually what is meant by the term "centrifugal force". Reactive centrifugal force, being one-half of the reaction pair together with centripetal force, is a concept which applies in any reference frame.
[note 9] The force required to sustain this acceleration, called the centripetal force, is therefore also directed toward the center of the circle and has magnitude /. Many orbits, such as that of the Moon around the Earth, can be approximated by uniform circular motion.
The force of gravity and the normal force. The resultant force acts as the required centripetal force. The mathematical derivation for the Eötvös effect for motion along the Equator explains the factor 2 in the first term of the Eötvös correction formula. What remains to be explained is the cosine factor.