enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    A cubic equation with real coefficients can be solved geometrically using compass, straightedge, and an angle trisector if and only if it has three real roots. [30]: Thm. 1 A cubic equation can be solved by compass-and-straightedge construction (without trisector) if and only if it has a rational root.

  3. Cube root - Wikipedia

    en.wikipedia.org/wiki/Cube_root

    Cubic equations, which are polynomial equations of the third degree (meaning the highest power of the unknown is 3) can always be solved for their three solutions in terms of cube roots and square roots (although simpler expressions only in terms of square roots exist for all three solutions, if at least one of them is a rational number).

  4. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    The roots , of the quadratic polynomial () = + + satisfy + =, =. The first of these equations can be used to find the minimum (or maximum) of P ; see Quadratic equation § Vieta's formulas .

  5. Cubic equations of state - Wikipedia

    en.wikipedia.org/wiki/Cubic_equations_of_state

    This equation may have up to three roots. The maximal root of the cubic equation generally corresponds to a vapor state, while the minimal root is for a liquid state. This should be kept in mind when using cubic equations in calculations, e.g., of vapor-liquid equilibrium.

  6. Resolvent (Galois theory) - Wikipedia

    en.wikipedia.org/wiki/Resolvent_(Galois_theory)

    In the case of a cubic equation, this resolvent is sometimes called the quadratic resolvent; its roots appear explicitly in the formulas for the roots of a cubic equation. The cubic resolvent of a quartic equation, which is a resolvent for the dihedral group of 8 elements.

  7. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    Finding the roots (zeros) of a given polynomial has been a prominent mathematical problem.. Solving linear, quadratic, cubic and quartic equations in terms of radicals and elementary arithmetic operations on the coefficients can always be done, no matter whether the roots are rational or irrational, real or complex; there are formulas that yield the required solutions.

  8. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    The nested radicals in this solution cannot in general be simplified unless the cubic equation has at least one rational solution. Indeed, if the cubic has three irrational but real solutions, we have the casus irreducibilis, in which all three real solutions are written in terms of cube roots of complex numbers. On the other hand, consider the ...

  9. Cube (algebra) - Wikipedia

    en.wikipedia.org/wiki/Cube_(algebra)

    Mesopotamian mathematicians created cuneiform tablets with tables for calculating cubes and cube roots by the Old Babylonian period (20th to 16th centuries BC). [12] [13] Cubic equations were known to the ancient Greek mathematician Diophantus. [14] Hero of Alexandria devised a method for calculating cube roots in the 1st century CE. [15]