enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    A modular multiplicative inverse of a modulo m can be found by using the extended Euclidean algorithm. The Euclidean algorithm determines the greatest common divisor (gcd) of two integers, say a and m. If a has a multiplicative inverse modulo m, this gcd must be 1. The last of several equations produced by the algorithm may be solved for this gcd.

  3. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    When R is a power of a small positive integer b, N′ can be computed by Hensel's lemma: The inverse of N modulo b is computed by a naïve algorithm (for instance, if b = 2 then the inverse is 1), and Hensel's lemma is used repeatedly to find the inverse modulo higher and higher powers of b, stopping when the inverse modulo R is known; N′ is ...

  4. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.

  5. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    With that provision, x is the modular multiplicative inverse of a modulo b, and y is the modular multiplicative inverse of b modulo a. Similarly, the polynomial extended Euclidean algorithm allows one to compute the multiplicative inverse in algebraic field extensions and, in particular in finite fields of non prime order.

  6. Multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_inverse

    In modular arithmetic, the modular multiplicative inverse of a is also defined: it is the number x such that ax ≡ 1 (mod n). This multiplicative inverse exists if and only if a and n are coprime. For example, the inverse of 3 modulo 11 is 4 because 4 ⋅ 3 ≡ 1 (mod 11). The extended Euclidean algorithm may be used to compute it.

  7. Inversive congruential generator - Wikipedia

    en.wikipedia.org/wiki/Inversive_congruential...

    Inversive congruential generators are a type of nonlinear congruential pseudorandom number generator, which use the modular multiplicative inverse (if it exists) to generate the next number in a sequence. The standard formula for an inversive congruential generator, modulo some prime q is: =,

  8. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    This integer a −1 is called a modular multiplicative inverse of a modulo m. If a ≡ b (mod m) and a −1 exists, then a −1 ≡ b −1 (mod m) (compatibility with multiplicative inverse, and, if a = b, uniqueness modulo m). If ax ≡ b (mod m) and a is coprime to m, then the solution to this linear congruence is given by x ≡ a −1 b (mod m).

  9. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ 1 (mod n). It exists precisely when a is coprime to n , because in that case gcd( a , n ) = 1 and by Bézout's lemma there are integers x and y satisfying ax + ny = 1 .