Search results
Results from the WOW.Com Content Network
The values (), …, of the partition function (1, 2, 3, 5, 7, 11, 15, and 22) can be determined by counting the Young diagrams for the partitions of the numbers from 1 to 8. In number theory, the partition function p(n) represents the number of possible partitions of a non-negative integer n.
The initial idea is usually attributed to the work of Hardy with Srinivasa Ramanujan a few years earlier, in 1916 and 1917, on the asymptotics of the partition function.It was taken up by many other researchers, including Harold Davenport and I. M. Vinogradov, who modified the formulation slightly (moving from complex analysis to exponential sums), without changing the broad lines.
The order-dependent composition 1 + 3 is the same partition as 3 + 1, and the two distinct compositions 1 + 2 + 1 and 1 + 1 + 2 represent the same partition as 2 + 1 + 1. An individual summand in a partition is called a part. The number of partitions of n is given by the partition function p(n). So p(4) = 5.
In mathematics, the Hardy–Ramanujan theorem, proved by Ramanujan and checked by Hardy [1] states that the normal order of the number () of distinct prime factors of a number is . Roughly speaking, this means that most numbers have about this number of distinct prime factors.
In plain words, e.g., the first congruence means that If a number is 4 more than a multiple of 5, i.e. it is in the sequence 4, 9, 14, 19, 24, 29, . . . then the number of its partitions is a multiple of 5. Later other congruences of this type were discovered, for numbers and for Tau-functions.
Let n be a non-negative integer and let p(n) denote the number of partitions of n (p(0) is defined to be 1).Srinivasa Ramanujan in a paper [3] published in 1918 stated and proved the following congruences for the partition function p(n), since known as Ramanujan congruences.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
By a partition of a positive integer n we mean a finite multiset λ = { λ k, λ k − 1, . . . , λ 1} of positive integers satisfying the following two conditions: . λ k ≥ . . . ≥ λ 2 ≥ λ 1 > 0.