enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. NumPy - Wikipedia

    en.wikipedia.org/wiki/NumPy

    NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]

  3. Gaussian random field - Wikipedia

    en.wikipedia.org/wiki/Gaussian_random_field

    One way of constructing a GRF is by assuming that the field is the sum of a large number of plane, cylindrical or spherical waves with uniformly distributed random phase. Where applicable, the central limit theorem dictates that at any point, the sum of these individual plane-wave contributions will exhibit a Gaussian distribution.

  4. Random projection - Wikipedia

    en.wikipedia.org/wiki/Random_projection

    The random matrix R can be generated using a Gaussian distribution. The first row is a random unit vector uniformly chosen from S d − 1 {\displaystyle S^{d-1}} . The second row is a random unit vector from the space orthogonal to the first row, the third row is a random unit vector from the space orthogonal to the first two rows, and so on.

  5. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    Mathematically, the derivatives of the Gaussian function can be represented using Hermite functions. For unit variance, the n-th derivative of the Gaussian is the Gaussian function itself multiplied by the n-th Hermite polynomial, up to scale. Consequently, Gaussian functions are also associated with the vacuum state in quantum field theory.

  6. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    A Gaussian process can be used as a prior probability distribution over functions in Bayesian inference. [7] [23] Given any set of N points in the desired domain of your functions, take a multivariate Gaussian whose covariance matrix parameter is the Gram matrix of your N points with some desired kernel, and sample from that Gaussian. For ...

  7. Random sample consensus - Wikipedia

    en.wikipedia.org/wiki/Random_sample_consensus

    A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.

  8. LOBPCG - Wikipedia

    en.wikipedia.org/wiki/LOBPCG

    A good quality random Gaussian function with the zero mean is commonly the default in LOBPCG to generate the initial approximations. To fix the initial approximations, one can select a fixed seed for the random number generator. In contrast to the Lanczos method, LOBPCG rarely exhibits asymptotic superlinear convergence in practice.

  9. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    Simplified forms of Gaussian elimination have been developed for these situations. [ 6 ] The textbook Numerical Mathematics by Alfio Quarteroni , Sacco and Saleri, lists a modified version of the algorithm which avoids some of the divisions (using instead multiplications), which is beneficial on some computer architectures.