Search results
Results from the WOW.Com Content Network
Chaos theory has been used for many years in cryptography. In the past few decades, chaos and nonlinear dynamics have been used in the design of hundreds of cryptographic primitives. These algorithms include image encryption algorithms, hash functions, secure pseudo-random number generators, stream ciphers, watermarking, and steganography. [123]
Biological applications of bifurcation theory provide a framework for understanding the behavior of biological networks modeled as dynamical systems.In the context of a biological system, bifurcation theory describes how small changes in an input parameter can cause a bifurcation or qualitative change in the behavior of the system.
Bifurcation theory has been applied to connect quantum systems to the dynamics of their classical analogues in atomic systems, [6] [7] [8] molecular systems, [9] and resonant tunneling diodes. [10] Bifurcation theory has also been applied to the study of laser dynamics [ 11 ] and a number of theoretical examples which are difficult to access ...
In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]
The Lotka–Volterra equations, also known as the Lotka–Volterra predator–prey model, are a pair of first-order nonlinear differential equations, frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey.
Dynamical systems theory and chaos theory deal with the long-term qualitative behavior of dynamical systems.Here, the focus is not on finding precise solutions to the equations defining the dynamical system (which is often hopeless), but rather to answer questions like "Will the system settle down to a steady state in the long term, and if so, what are the possible steady states?", or "Does ...
Dynamical neuroscience describes the non-linear dynamics at many levels of the brain from single neural cells [3] to cognitive processes, sleep states and the behavior of neurons in large-scale neuronal simulation. [4] Neurons have been modeled as nonlinear systems for decades, but dynamical systems are not constrained to neurons.
Ying-Cheng Lai is a Chinese theoretical physicist/electrical engineer who works in the field of chaos theory and complex dynamical systems. He is among the pioneers in the field of relativistic quantum chaos. Currently, he works at Arizona State University as a Regents Professor. He also holds an ISS Chair Professorship in Electrical Engineering.