Search results
Results from the WOW.Com Content Network
When a metal wire is subjected to electric force applied on its opposite ends, these free electrons rush in the direction of the force, thus forming what we call an electric current." When a metal wire is connected across the two terminals of a DC voltage source such as a battery , the source places an electric field across the conductor.
Wire sized 1 AWG is referred to as "one gauge" or "No. 1" wire; similarly, thinner sizes are pronounced "x gauge" or "No. x" wire, where x is the positive-integer AWG number. Consecutive AWG wire sizes thicker than No. 1 wire are designated by the number of zeros: No. 0, often written 1/0 and referred to as "one aught" wire
Ohm's law states that the electric current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, [1] one arrives at the three mathematical equations used to describe this relationship: [2]
In commerce, the sizes of wire are estimated by devices, also called gauges, which consist of plates of circular or oblong form having notches of different widths around their edges to receive wire and sheet metals of different thicknesses. Each notch is stamped with a number, and the wire or sheet, which just fits a given notch, is stated to ...
The ampere is named for French physicist and mathematician André-Marie Ampère (1775–1836), who studied electromagnetism and laid the foundation of electrodynamics.In recognition of Ampère's contributions to the creation of modern electrical science, an international convention, signed at the 1881 International Exposition of Electricity, established the ampere as a standard unit of ...
If wire 1 is also infinite, the integral diverges, because the total attractive force between two infinite parallel wires is infinity. In fact, what we really want to know is the attractive force per unit length of wire 1. Therefore, assume wire 1 has a large but finite length .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The power losses in the wire are a product of the square of the current ( I ) and the resistance (R) of the wire, described by the formula: P w = I 2 R . {\displaystyle P_{\rm {w}}=I^{2}R\,.} This means that when transmitting a fixed power on a given wire, if the current is halved (i.e. the voltage is doubled), the power loss due to the wire's ...