Search results
Results from the WOW.Com Content Network
Similarly, any polar coordinate is identical to the coordinate with the negative radial component and the opposite direction (adding 180° to the polar angle). Therefore, the same point ( r , φ ) can be expressed with an infinite number of different polar coordinates ( r , φ + n × 360°) and (− r , φ + 180° + n × 360°) = (− r , φ ...
Vectors are defined in cylindrical coordinates by (ρ, φ, z), where ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π), z is the regular z-coordinate. (ρ, φ, z) is given in Cartesian coordinates by:
Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.
Another common coordinate system for the plane is the polar coordinate system. [7] A point is chosen as the pole and a ray from this point is taken as the polar axis. For a given angle θ, there is a single line through the pole whose angle with the polar axis is θ (measured counterclockwise from the axis to the line).
Caddie initially used its own proprietary file format .DRW (binary) and an ASCII .CEX (Caddie Exchange format). Caddie could also import and export native AutoCad .DWG and .DXF file formats, but since version 10, Caddie rewrote its core kernels and now uses as native file format OpenDWG. [11] Version 10 was released in March 2005. [12]
Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle ) is called the reference plane (sometimes fundamental plane ).
Non-rectangular coordinates: the above all use two-dimensional rectangular coordinates; an example of a graph using polar coordinates, sometimes in three dimensions, is the antenna radiation pattern chart, which represents the power radiated in all directions by an antenna of specified type.