Search results
Results from the WOW.Com Content Network
Usually, chord length and height are given or measured, and sometimes the arc length as part of the perimeter, and the unknowns are area and sometimes arc length. These can't be calculated simply from chord length and height, so two intermediate quantities, the radius and central angle are usually calculated first.
The angle θ is taken in the positive sense and must lie in the interval 0 < θ ≤ π (radian measure). The chord function can be related to the modern sine function, by taking one of the points to be (1,0), and the other point to be (cos θ, sin θ), and then using the Pythagorean theorem to calculate the chord length: [2]
Thus, for the arc of 1 / 2 °, the chord length is slightly more than the arc angle in degrees. As the arc increases, the ratio of the chord to the arc decreases. When the arc reaches 60°, the chord length is exactly equal to the number of degrees in the arc, i.e. chord 60° = 60. For arcs of more than 60°, the chord is less than the ...
The central angle between the two points can be determined from the chord length. The great circle distance is proportional to the central angle. The great circle chord length, , may be calculated as follows for the corresponding unit sphere, by means of Cartesian subtraction:
A circular sector is shaded in green. Its curved boundary of length L is a circular arc. A circular arc is the arc of a circle between a pair of distinct points.If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians (180 degrees); and the other arc, the major arc, subtends an angle ...
Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...
In geometry, the sagitta (sometimes abbreviated as sag [1]) of a circular arc is the distance from the midpoint of the arc to the midpoint of its chord. [2] It is used extensively in architecture when calculating the arc necessary to span a certain height and distance and also in optics where it is used to find the depth of a spherical mirror ...
Since it is straightforward to calculate the length of each linear segment (using the Pythagorean theorem in Euclidean space, for example), the total length of the approximation can be found by summation of the lengths of each linear segment; that approximation is known as the (cumulative) chordal distance.