Search results
Results from the WOW.Com Content Network
In graph-theoretic terms, the theorem states that for loopless planar graph, its chromatic number is ().. The intuitive statement of the four color theorem – "given any separation of a plane into contiguous regions, the regions can be colored using at most four colors so that no two adjacent regions have the same color" – needs to be interpreted appropriately to be correct.
Euler's formula states that if a finite, connected, planar graph is drawn in the plane without any edge intersections, and v is the number of vertices, e is the number of edges and f is the number of faces (regions bounded by edges, including the outer, infinitely large region), then
The five color theorem is a result from graph theory that given a plane separated into regions, such as a political map of the countries of the world, the regions may be colored using no more than five colors in such a way that no two adjacent regions receive the same color. The five color theorem is implied by the stronger four color theorem ...
On graphs with maximal degree 3 or less, however, Brooks' theorem implies that the 3-coloring problem can be solved in linear time. Further, for every k > 3, a k-coloring of a planar graph exists by the four color theorem, and it is possible to find such a coloring in polynomial time.
This is known as Euler's Theorem: A connected graph has an Euler cycle if and only if every vertex has an even number of incident edges. The term Eulerian graph has two common meanings in graph theory. One meaning is a graph with an Eulerian circuit, and the other is a graph with every vertex of even degree.
An entirely different approach was needed for the much older problem of finding the number of colors needed for the plane or sphere, solved in 1976 as the four color theorem by Haken and Appel. On the sphere the lower bound is easy, whereas for higher genera the upper bound is easy and was proved in Heawood's original short paper that contained ...
Euclid–Euler theorem (number theory) Euler's partition theorem (number theory) Euler's polyhedron theorem ; Euler's quadrilateral theorem ; Euler's rotation theorem ; Euler's theorem (differential geometry) Euler's theorem (number theory) Euler's theorem in geometry (triangle geometry) Euler's theorem on homogeneous functions (multivariate ...
Discharging is most well known for its central role in the proof of the four color theorem. The discharging method is used to prove that every graph in a certain class contains some subgraph from a specified list. The presence of the desired subgraph is then often used to prove a coloring result. [1]