enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partition function (statistical mechanics) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    This provides us with a method for calculating the expected values of many microscopic quantities. We add the quantity artificially to the microstate energies (or, in the language of quantum mechanics, to the Hamiltonian), calculate the new partition function and expected value, and then set λ to zero in the final

  3. Partition function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Partition_function...

    The partition function ties together many different concepts, and thus offers a general framework in which many different kinds of quantities may be calculated. In particular, it shows how to calculate expectation values and Green's functions, forming a bridge to Fredholm theory.

  4. Ensemble (mathematical physics) - Wikipedia

    en.wikipedia.org/wiki/Ensemble_(mathematical...

    The generalized version of the partition function provides the complete framework for working with ensemble averages in thermodynamics, information theory, statistical mechanics and quantum mechanics. The microcanonical ensemble represents an isolated system in which energy (E), volume (V) and the number of particles (N) are all constant.

  5. Maxwell–Boltzmann distribution - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann...

    Z is the partition function, corresponding to the denominator in equation 1; m is the molecular mass of the gas; T is the thermodynamic temperature; k B is the Boltzmann constant. This distribution of N i : N is proportional to the probability density function f p for finding a molecule with these values of momentum components, so:

  6. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    A partition in which no part occurs more than once is called strict, or is said to be a partition into distinct parts. The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts.

  7. Isothermal–isobaric ensemble - Wikipedia

    en.wikipedia.org/wiki/Isothermal–isobaric_ensemble

    This is almost the partition function for the -ensemble, but it has units of volume, an unavoidable consequence of taking the above sum over volumes into an integral. Restoring the constant C {\displaystyle C} yields the proper result for Δ ( N , P , T ) {\displaystyle \Delta (N,P,T)} .

  8. Translational partition function - Wikipedia

    en.wikipedia.org/wiki/Translational_partition...

    In statistical mechanics, the translational partition function, is that part of the partition function resulting from the movement (translation) of the center of mass. For a single atom or molecule in a low pressure gas, neglecting the interactions of molecules , the canonical ensemble q T {\displaystyle q_{T}} can be approximated by: [ 1 ]

  9. Pentagonal number theorem - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_number_theorem

    (The article on unrestricted partition functions discusses this type of generating function.) For example, the coefficient of x 5 is +1 because there are two ways to split 5 into an even number of distinct parts (4 + 1 and 3 + 2), but only one way to do so for an odd number of distinct parts (the one-part partition 5).