Search results
Results from the WOW.Com Content Network
Partition coefficients can be measured experimentally in various ways (by shake-flask, HPLC, etc.) or estimated by calculation based on a variety of methods (fragment-based, atom-based, etc.). If a substance is present as several chemical species in the partition system due to association or dissociation, each species is assigned its own K ow ...
The grand canonical partition function applies to a grand canonical ensemble, in which the system can exchange both heat and particles with the environment, at fixed temperature, volume, and chemical potential. Other types of partition functions can be defined for different circumstances; see partition function (mathematics) for
Rotational energies are quantized. For a diatomic molecule like CO or HCl, or a linear polyatomic molecule like OCS in its ground vibrational state, the allowed rotational energies in the rigid rotor approximation are = = (+) = (+). J is the quantum number for total rotational angular momentum and takes all integer values starting at zero, i.e., =,,, …, = is the rotational constant, and is ...
where N is number of particles, h is that Planck constant, I is moment of inertia, and Z is the partition function, in various forms: Degree of freedom Partition function
The n-octanol-water partition coefficient, K ow is a partition coefficient for the two-phase system consisting of n-octanol and water. [1] K ow is also frequently referred to by the symbol P, especially in the English literature. It is also called n-octanol-water partition ratio. [2] [3] [4]
The characteristic rotational temperature (θ R or θ rot) is commonly used in statistical thermodynamics to simplify the expression of the rotational partition function and the rotational contribution to molecular thermodynamic properties.
In statistical mechanics, the translational partition function, is that part of the partition function resulting from the movement (translation) of the center of mass. For a single atom or molecule in a low pressure gas, neglecting the interactions of molecules , the canonical ensemble q T {\displaystyle q_{T}} can be approximated by: [ 1 ]
The distribution constant (or partition ratio) (K D) is the equilibrium constant for the distribution of an analyte in two immiscible solvents. [1] [2] [3]In chromatography, for a particular solvent, it is equal to the ratio of its molar concentration in the stationary phase to its molar concentration in the mobile phase, also approximating the ratio of the solubility of the solvent in each phase.