Search results
Results from the WOW.Com Content Network
Nitrogen is a fundamental chemical component of amino acids, the molecular building blocks of protein. As such, nitrogen balance may be used as an index of protein metabolism. [1] When more nitrogen is gained than lost by an individual, they are considered to have a positive nitrogen balance and be in a state of overall protein anabolism.
Approximately 78% of Earth's atmosphere is N gas (N 2), which is an inert compound and biologically unavailable to most organisms.In order to be utilized in most biological processes, N 2 must be converted to reactive nitrogen (Nr), which includes inorganic reduced forms (NH 3 and NH 4 +), inorganic oxidized forms (NO, NO 2, HNO 3, N 2 O, and NO 3 −), and organic compounds (urea, amines, and ...
The nitrogen cycle is an important process in the ocean as well. While the overall cycle is similar, there are different players [40] and modes of transfer for nitrogen in the ocean. Nitrogen enters the water through the precipitation, runoff, or as N 2 from the atmosphere. Nitrogen cannot be utilized by phytoplankton as N
The most apparent sign of hypermetabolism is an abnormally high intake of calories followed by continuous weight loss. Internal symptoms of hypermetabolism include: peripheral insulin resistance, elevated catabolism of protein, carbohydrates and triglycerides, and a negative nitrogen balance in the body. [2]
Biological value (BV) is a measure of the proportion of absorbed protein from a food which becomes incorporated into the proteins of the organism's body. It captures how readily the digested protein can be used in protein synthesis in the cells of the organism.
The energy/nitrogen ratio in urine shows considerable variation and the energy/organic matter is less variable, but the energy/nitrogen value provided Atwater with a workable approach although this has caused some confusion and only applies for subjects in nitrogen balance.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
The demands for carbon, nitrogen and phosphorus at specific ratios by invertebrates can change at different life stages within invertebrate life history. The growth rate hypothesis (GRH) addresses this phenomenon and states that the demands for phosphorus increase during active growth phases to produce P-rich nucleic acids in biomass production and are reflected in the P content of the consumer.